CSE 539: Applied Cryptography Week 9: Public-Key Encryption Ni Trieu (ASU) Reading: https://joyofcryptography.com/pdf/chap15.pdf #### Recap: DHKE $$\frac{\text{Alice}}{a \leftarrow \mathbb{Z}_n} \qquad A = g^a \% p \\ B = g^b \% p \qquad b \leftarrow \mathbb{Z}_n \\ \text{return } B^a \% p \qquad \text{return } A^b \% p$$ Definition 14.2 The **discrete logarithm problem** is: given $X \in \langle g \rangle$, determine a number x such that $g^x = X$. (Discrete Log) Here the exponentiation is with respect to the multiplication operation in $\mathbb{G} = \langle g \rangle$. # Public Key #### Public Key Definition 15.1 Let Σ be a public-key encryption scheme. Then Σ is secure against chosen-plaintext attacks (CPA secure) if $\mathcal{L}^{\Sigma}_{pk\text{-cpa-L}} \approx \mathcal{L}^{\Sigma}_{pk\text{-cpa-R}}$, where: $\mathcal{L}^{\Sigma}_{ extsf{pk-cpa-L}}$ $(pk, sk) \leftarrow \Sigma$.KeyGen GETPK(): return *pk* CHALLENGE $(m_L, m_R \in \Sigma.\mathcal{M})$: return Σ . Enc(pk, m_L) $\mathcal{L}^{\Sigma}_{ extsf{pk-cpa-R}}$ $(pk, sk) \leftarrow \Sigma$.KeyGen GETPK(): return *pk* CHALLENGE $(m_L, m_R \in \Sigma.\mathcal{M})$: return Σ .Enc(pk, m_R) ### Public Key: ElGamal Encryption ElGamal encryption is a public-key encryption scheme that is based on DHKA. Given a choice of cyclic group \mathbb{G} with n elements and generator g, the construction of ElGamal encryption is as below: | Keygen: | $Enc(A,M\in\mathbb{G})$: | Dec(a,(B,X)): | |-----------------------------------|-----------------------------|----------------------| | $sk := a \leftarrow \mathbb{Z}_n$ | $b \leftarrow \mathbb{Z}_n$ | return $X(B^a)^{-1}$ | | $pk := A := g^a$ | $B := g^b$ | | | return (sk, pk) | return $(B, M \cdot A^b)$ | | ## ElGamal Encryption vs DHKE #### **EIGamal Encryption** Suppose you do not know the secret key sk. Given the public key pk and the ElGamal ciphertext (B,X) that encrypts an unknown plaintext $M \in \mathbb{G}$, construct another ElGamal ciphertext (B',X') that decrypts to the same M (e.g., show how to do it without knowing M). Show the correctness of your construction. #### **EIGamal Encryption** Suppose you do not know the secret key sk. Given the public key pk and the ElGamal ciphertext (B, X) that encrypts an unknown plaintext $M \in \mathbb{G}$, construct another ElGamal ciphertext (B', X') that decrypts to M^2 (e.g., show how to do it without knowing M). Show the correctness of your construction.