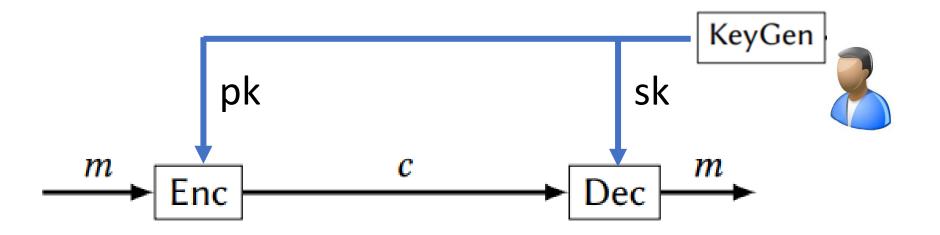
CSE 539: Applied Cryptography Week 9: Public-Key Encryption

Ni Trieu (ASU)

Reading: https://joyofcryptography.com/pdf/chap15.pdf


Recap: DHKE

$$\frac{\text{Alice}}{a \leftarrow \mathbb{Z}_n} \qquad A = g^a \% p \\
B = g^b \% p \qquad b \leftarrow \mathbb{Z}_n \\
\text{return } B^a \% p \qquad \text{return } A^b \% p$$

Definition 14.2 The **discrete logarithm problem** is: given $X \in \langle g \rangle$, determine a number x such that $g^x = X$. (Discrete Log) Here the exponentiation is with respect to the multiplication operation in $\mathbb{G} = \langle g \rangle$.

Public Key

Public Key

Definition 15.1 Let Σ be a public-key encryption scheme. Then Σ is secure against chosen-plaintext attacks (CPA secure) if $\mathcal{L}^{\Sigma}_{pk\text{-cpa-L}} \approx \mathcal{L}^{\Sigma}_{pk\text{-cpa-R}}$, where:

 $\mathcal{L}^{\Sigma}_{ extsf{pk-cpa-L}}$

 $(pk, sk) \leftarrow \Sigma$.KeyGen

GETPK():

return *pk*

CHALLENGE $(m_L, m_R \in \Sigma.\mathcal{M})$:

return Σ . Enc(pk, m_L)

 $\mathcal{L}^{\Sigma}_{ extsf{pk-cpa-R}}$

 $(pk, sk) \leftarrow \Sigma$.KeyGen

GETPK():

return *pk*

CHALLENGE $(m_L, m_R \in \Sigma.\mathcal{M})$:

return Σ .Enc(pk, m_R)

Public Key: ElGamal Encryption

ElGamal encryption is a public-key encryption scheme that is based on DHKA. Given a choice of cyclic group \mathbb{G} with n elements and generator g, the construction of ElGamal encryption is as below:

Keygen:	$Enc(A,M\in\mathbb{G})$:	Dec(a,(B,X)):
$sk := a \leftarrow \mathbb{Z}_n$	$b \leftarrow \mathbb{Z}_n$	return $X(B^a)^{-1}$
$pk := A := g^a$	$B := g^b$	
return (sk, pk)	return $(B, M \cdot A^b)$	

ElGamal Encryption vs DHKE

EIGamal Encryption

Suppose you do not know the secret key sk. Given the public key pk and the ElGamal ciphertext (B,X) that encrypts an unknown plaintext $M \in \mathbb{G}$, construct another ElGamal ciphertext (B',X') that decrypts to the same M (e.g., show how to do it without knowing M). Show the correctness of your construction.

EIGamal Encryption

Suppose you do not know the secret key sk. Given the public key pk and the ElGamal ciphertext (B, X) that encrypts an unknown plaintext $M \in \mathbb{G}$, construct another ElGamal ciphertext (B', X') that decrypts to M^2 (e.g., show how to do it without knowing M). Show the correctness of your construction.