
CSE 539: Applied Cryptography
Week 7: RSA

Ni Trieu (ASU)

Reading: https://joyofcryptography.com/pdf/chap13.pdf
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

https://joyofcryptography.com/pdf/chap13.pdf

Recap: How RSA works

RSA Security

• Given only the public information (N, e), it should be hard to compute the RSA inverse
(y -> y^d mod N) on randomly chosen values.

• In other words, the only person who is able to compute the RSA inverse function is
the person who generated the RSA parameters

RSA Security

• Currently the best known attacks against RSA (i.e., ways to compute the inverse RSA
function given only the public information) involve factoring the modulus

=> understand the SOTA for factoring large numbers

• “Trial division” method of factoring

• The fastest factoring algorithm today is called the Generalized Number Field Sieve
(GNFS)

• https://en.wikipedia.org/wiki/General_number_field_sieve

• https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

RSA Security

• Example, Sage can easily factor reasonably large numbers. Factoring the following
200-bit RSA modulus takes about ~10 seconds

• As of Febrary 2020, the largest RSA modulus that has been (publically) factored is a
829-bit modulus

• https://en.wikipedia.org/wiki/RSA_numbers#RSA-250

• Current best practices suggest to use 2048- or 4096-bit RSA moduli, meaning that p
and q are each 1024 or 2048 bits.

https://www.sagemath.org/

https://en.wikipedia.org/wiki/RSA_numbers#RSA-250

RSA Security

• But, if we know extra information about p and q, we can break RSA security

• For example, given 𝛿 = |𝑝 − 𝑞|

RSA Security

• But, if we know extra information about p and q, we can break RSA security

• For example, given that p and q are close (e.g. 𝑝 − 𝑞 < 1000)

	Slide 1: CSE 539: Applied Cryptography Week 7: RSA
	Slide 2: Recap: How RSA works
	Slide 5: RSA Security
	Slide 6: RSA Security
	Slide 9: RSA Security
	Slide 10
	Slide 11: RSA Security
	Slide 13: RSA Security

