CSE 539: Applied Cryptography Week 7: RSA

Ni Trieu (ASU)

Reading: <u>https://joyofcryptography.com/pdf/chap13.pdf</u> https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Recap: How RSA works

The RSA function is defined as follows:

- Let p and q be distinct primes (later we will say more about how they are chosen), and let N = pq. N is called the **RSA modulus**.
- ► Let *e* and *d* be integers such that $ed \equiv_{\phi(N)} 1$. That is, *e* and *d* are multiplicative inverses mod $\phi(N)$ not mod N!
- ▶ The RSA function is: $x \mapsto x^e \% N$, where $x \in \mathbb{Z}_N$.
- ▶ The inverse RSA function is: $y \mapsto y^d \% N$, where $x \in \mathbb{Z}_N$.

- Given only the public information (N, e), it should be hard to compute the RSA inverse (y -> y^d mod N) on randomly chosen values.
 - In other words, the only person who is able to compute the RSA inverse function is the person who generated the RSA parameters

• Currently the best known attacks against RSA (i.e., ways to compute the inverse RSA function given only the public information) involve factoring the modulus

=> understand the SOTA for factoring large numbers

• "Trial division" method of factoring

- The fastest factoring algorithm today is called the Generalized Number Field Sieve (GNFS)
 - https://en.wikipedia.org/wiki/General_number_field_sieve
 - https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

• Example, Sage can easily factor reasonably large numbers. Factoring the following 200-bit RSA modulus takes about ~10 seconds

```
sage: p = random_prime(2^100)
sage: q = random_prime(2^100)
sage: N = p*q
sage: factor(N)
206533721079613722225064934611 * 517582080563726621130111418123
```

- As of Febrary 2020, the largest RSA modulus that has been (publically) factored is a 829-bit modulus
 - <u>https://en.wikipedia.org/wiki/RSA_numbers#RSA-250</u>
- Current best practices suggest to use 2048- or 4096-bit RSA moduli, meaning that p and q are each 1024 or 2048 bits.

https://www.sagemath.org/

RSA number	Decimal digits	Binary digits	Cash prize offered	Factored on	Factored by
RSA100	100	330	US\$1,000 ^[8]	April 1, 1991 ^[9]	Arjen K. Lenstra
RSA110	110	364	US\$4,429 ^[8]	April 14, 1992 ^[9]	Arjen K. Lenstra and M.S. Manasse
RSA120	120	397	US\$5,898 ^[8]	July 9, 1993 ^[10]	T. Denny et al.
RSA129 ^[a]	129	426	US\$100	April 26, 1994 ^[9]	Arjen K. Lenstra et al.
RSA130	130	430	US\$14,527 ^[8]	April 10, 1996	Arjen K. Lenstra et al.
RSA140	140	463	US\$17,226	February 2, 1999	Herman te Riele et al.
RSA150	150	496		April 16, 2004	Kazumaro Aoki et al.
RSA155	155	512	US\$9,383 ^[8]	August 22, 1999	Herman te Riele et al.
RSA160	160	530		April 1, 2003	Jens Franke et al., University of Bonn
RSA170 ^[b]	170	563		December 29, 2009	D. Bonenberger and M. Krone [c]
RSA576	174	576	US\$10,000	December 3, 2003	Jens Franke et al., University of Bonn
RSA180 ^[b]	180	596		May 8, 2010	S. A. Danilov and I. A. Popovyan, Moscow State University ^[11]
RSA190 ^[b]	190	629		November 8, 2010	A. Timofeev and I. A. Popovyan
RSA640	193	640	US\$20,000	November 2, 2005	Jens Franke et al., University of Bonn
RSA200 [b] ?	200	663		May 9, 2005	Jens Franke et al., University of Bonn
RSA210 ^[b]	210	696		September 26, 2013 ^[12]	Ryan Propper
RSA704 ^[b]	212	704	US\$30,000	July 2, 2012	Shi Bai, Emmanuel Thomé and Paul Zimmermann
RSA220 [b]	220	729		May 13, 2016	S. Bai, P. Gaudry, A. Kruppa, E. Thomé and P. Zimmermann
RSA230 [b]	230	762		August 15, 2018	Samuel S. Gross, Noblis, Inc.
RSA232 ^[b]	232	768		February 17, 2020 ^[13]	N. L. Zamarashkin, D. A. Zheltkov and S. A. Matveev.
RSA768 ^[b]	232	768	US\$50,000	December 12, 2009	Thorsten Kleinjung et al. ^[14]
RSA240 ^[b]	240	795		Dec 2, 2019 ^[15]	F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé and P. Zimmermann
RSA250 ^[b]	250	829		Feb 28, 2020 ^[16]	F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé and P. Zimmermann

- But, if we know extra information about p and q, we can break RSA security
- For example, given $\delta = |p q|$

- But, if we know extra information about p and q, we can break RSA security
- For example, given that p and q are close (e.g. |p q| < 1000)