CSE 539: Applied Cryptography Lec 7: Message Authentication Codes

Ni Trieu (ASU)

Reading: https://joyofcryptography.com/pdf/chap10.pdf

Recap: PRG/PRF/PRP

- A PRG is a function $G: \{0, 1\}^{\lambda} \to \{0, 1\}^{\lambda+\ell}$
- A PRF is a function $F: \{\mathbf{0}, \mathbf{1}\}^{\lambda} \times \{\mathbf{0}, \mathbf{1}\}^{in} \rightarrow \{\mathbf{0}, \mathbf{1}\}^{out}$
- A PRP is a function $\,\mathsf{F}\!:\!\{0,1\}^\lambda\times\{0,1\}^{blen}\to\{0,1\}^{blen}$

Recall: Encryption Basics & Terminology

• How to ensure that c was generated by Alice? (CCA-secure?)

Authentication

 What we are asking for is not to hide the ciphertext but to authenticate it: to ensure that it was generated by someone who knows the secret key.

Authentication: Challenge & Response

• A MAC is like a signature that can be added to a piece of data, which certifies that someone who knows the secret key attests to this particular data

A message authentication code (MAC) scheme for message space M consists of the following algorithms:

- ► KeyGen: samples a key.
- ▶ MAC: takes a key k and message $m \in M$ as input, and outputs a **tag** t. The MAC algorithm is deterministic.

 A MAC scheme is a secure MAC if the adversary knows valid MACs corresponding to various messages, she cannot produce a valid MAC for a different message.

k

Let Σ be a MAC scheme. We say that Σ is a secure MAC if $\mathcal{L}_{mac-real}^{\Sigma} \approx \mathcal{L}_{mac-fake}^{\Sigma}$, where: Definition 10.2 (MAC security)

$$\mathcal{L}_{mac-fake}^{\Sigma}$$

$$\mathcal{L}_{mac-fake}^{\Sigma}$$

$$k \leftarrow \Sigma. KeyGen$$

$$\mathcal{G}ETTAG(m \in \Sigma.\mathcal{M}):$$

$$return \Sigma. MAC(k, m)$$

$$\mathcal{C}HECKTAG(m \in \Sigma.\mathcal{M}, t):$$

$$return t \stackrel{?}{=} \Sigma. MAC(k, m)$$

$$\mathcal{L}HECKTAG(m \in \Sigma.\mathcal{M}, t):$$

cΣ

return $(m, t) \in \mathcal{T}$

• Quiz Sample: Is the below MAC secure?

Keygen:	$MAC(k, m_1 \dots m_\ell)$: // each m_i is λ bits
$\overline{k \leftarrow \{0,1\}^{\lambda}}$	$m^{\star} := 0^{\lambda}$
return k	for $i = 1$ to ℓ :
	$m^{\star} := m^{\star} \oplus m_i$
	return $F(k, m^{\star})$

• Quiz Sample: Is the below MAC secure?

Keygen:	$MAC(k, m_1 \ldots m_\ell)$: // each m_i is λ bits
$k \leftarrow \{0, 1\}^{\lambda}$	$t := 0^{\lambda}$
return k	for $i = 1$ to ℓ :
	$t := t \oplus F(k, m_i)$
	return t