CSE 539: Applied Cryptography Lec 4: Security Definition

Ni Trieu (ASU)

Recap: Secret Sharing

- m Secret to be shared
- P Set of participants
- => A qualified subsets of can reconstruct m

- Formally, secret sharing scheme allows share a secret m among n parties such that for a fixed number t < n, the following conditions are satisfied.
 - If < t parties get together, then they get no additional information about the secret.
 - If > t parties get together, then they can correctly reconstruct the secret

Project: Secret Sharing

- Verifiable Secret Sharing
 - <u>https://docs.google.com/spreadsheets/d/1iYJ0UNXLk5_1EMaMClZdwPr4hjuJb</u> <u>dlu5uPYJuL9uBo/edit?usp=sharing</u>
 - <u>https://link.springer.com/chapter/10.1007/3-540-68339-9_17</u>
 - <u>https://ieeexplore.ieee.org/abstract/document/4568297?casa_token=ORLzB8</u> <u>c9LPsAAAAA:vsQtCX4nBzLU9d51nc-</u> <u>WWEUxwvOJp2jyBEqEXZ9fArV5D5iUS2toJByMvGY53gEmPVOPrjgV</u>
 - <u>https://scholar.google.com/scholar?hl=en&as_sdt=0%2C3&q=Verifiable+Secre_t+Sharing&btnG=</u>

One-time Pad

Provable Security

• Consider the attacker as a calling program to the following subroutine

$$\frac{\text{CTXT}(m \in \Sigma.\mathcal{M}):}{k \leftarrow \Sigma.\text{KeyGen}}$$
$$c := \Sigma.\text{Enc}(k, m)$$
$$\text{return } c$$

Provable Security

• Consider the attacker as a calling program to the following subroutine

$$\frac{\text{CTXT}(m \in \Sigma.\mathcal{M}):}{k \leftarrow \Sigma.\text{KeyGen}}$$
$$c := \Sigma.\text{Enc}(k, m)$$
$$\text{return } c$$

• "Real-vs-Random" Style of Security Definition

$$\frac{\text{CTXT}(m \in \Sigma.\mathcal{M}):}{k \leftarrow \Sigma.\text{KeyGen}}$$

$$c \coloneqq \Sigma.\text{Enc}(k,m)$$
return c
$$vs. \qquad \frac{\text{CTXT}(m \in \Sigma.\mathcal{M}):}{c \leftarrow \Sigma.\mathcal{C}}$$

$$return c$$

• An encryption scheme is a good one if the two implementations of ctxt induce identical behavior in every calling program (Uniform ctxs)

Provable Security: One-time Pad (Example)

Encryption Basics & Terminology

- "Symmetric" Encryption scheme:
 - KeyGen() -> k
 - Enc(k,m) -> c
 - Dec(k,c) -> m
- Requirement: Dec(k, Enc(k, m)) = m

Provable Security

"Real-vs-Random" Style of Security Definition

- An encryption scheme is a good one if the two implementations of ctxt induce identical behavior in every calling program (Uniform ctxs)
- ⇒Security definitions for encryption capture the case where a key is used to encrypt only one plaintext.
- ⇒It would be more useful to have an encryption scheme that allows many plaintexts to be encrypted under the same key

Encryption Basics & Terminology

• What if Alice sends Enc(k,m) twice?

Encryption Basics & Terminology

- What if Alice sends c=Enc(k,m) twice?
 - Eve can observe it

Security Against Chosen Plaintext Attacks (CPA)

• CPA Security Definition:

Let Σ be an encryption scheme. We say that Σ has security against chosen-plaintext attacks (CPA security) if $\mathcal{L}_{cpa-L}^{\Sigma} \approx \mathcal{L}_{cpa-R}^{\Sigma}$, where:

- CPA security is often called "IND-CPA" security, meaning "indistinguishability of ciphertexts under chosen-plaintext attack."
 - "CPA is a type of cryptanalysis where an attacker can choose some or all of the plaintext messages that are encrypted with a secret key. By analyzing the resulting ciphertexts, the attacker may be able to recover the key or some information about the plaintext."

https://www.linkedin.com/advice/0/what-common-types-methods-chosen-plaintext-attacks-how#:~:text=Chosen%2Dplaintext%20attacks%20are%20a,some%20information%20about%20the%20plaintext.

CPA-Security

- Deterministic encryption can never be CPA-secure
- Why?

Quiz Sample:

• Is 20TP CPA-Secure?

 $\begin{array}{l} \displaystyle \frac{2\mathsf{OTP}(m \in \{0,1\}^{\lambda}):}{k_1 \leftarrow \{0,1\}^{\lambda}} & // \text{ Choose a random key } k_1 \text{ from } \{0,1\}^{\lambda} \\ k_2 \leftarrow \{0,1\}^{\lambda} & // \text{ Choose a random key } k_2 \text{ from } \{0,1\}^{\lambda} \\ c := k_2 \oplus (k_1 \oplus m) \\ \text{return } c \end{array}$

Security Against Chosen Plaintext Attacks (CPA)

Security Discussion

CPA: secure if Adversary chooses plaintext

• Cares about m ---> c direction

Security Against Chosen Ciphertext Attacks (CCA)

What if the adversary changes c?

Security Against Chosen Ciphertext Attacks (CCA)

- CCA Security Definition:
 - Goal: Can't learn what inside ciphertext c, even if you can decrypt anything other than c

Security Against Chosen Ciphertext Attacks (CCA)

Let Σ be an encryption scheme. We say that Σ has security against chosen-ciphertext attacks (CCA security) if $\mathcal{L}_{cca-L}^{\Sigma} \approx \mathcal{L}_{cca-R}^{\Sigma}$, where:

$\mathcal{L}_{ ext{cca-L}}^{\Sigma}$	$\mathcal{L}_{cca-R}^{\Sigma}$
$k \leftarrow \Sigma$.KeyGen	$k \leftarrow \Sigma$.KeyGen
$S := \emptyset$	$\mathcal{S} := \emptyset$
EAVESDROP $(m_L, m_R \in \Sigma.\mathcal{M})$: if $ m_L \neq m_R $ return err $c := \Sigma.\text{Enc}(k, m_L)$ $\mathcal{S} := \mathcal{S} \cup \{c\}$	$\frac{\text{EAVESDROP}(m_L, m_R \in \Sigma.\mathcal{M})}{\text{if } m_L \neq m_R \text{ return } err}$ $c := \Sigma.\text{Enc}(k, m_R)$ $\mathcal{S} := \mathcal{S} \cup \{c\}$
return c	return c
$\frac{\text{DECRYPT}(c \in \Sigma.C):}{\text{if } c \in S \text{ return } err}$	$\frac{\text{DECRYPT}(c \in \Sigma.C):}{\text{if } c \in S \text{ return err}}$
return Σ .Dec (k, c)	return Σ . Dec (k, c)

Security Discussion

CPA: secure if Adversary chooses plaintext

• Cares about m ---> c direction

CCA: secure if Adversary gets all of Dec(ctxt)

• Cares about c ---> m direction

Security Discussion

CPA: secure if Adversary chooses plaintext

• Cares about m ---> c direction

CCA: secure if Adversary gets all of Dec(ctxt)

- Cares about c ---> m direction
- In 1998, Daniel Bleichenbacher demonstrated a devastating attack against early versions of the SSL protocol. By presenting millions of carefully crafted ciphertexts to a webserver, an attacker could eventually recover arbitrary SSL session keys.

https://blog.cryptographyengineering.com/2016/03/01/attack-of-week-drown/