CSE 539: Applied Cryptography Lec 4: Security Definition

Ni Trieu (ASU)

Recap: Secret Sharing

- m Secret to be shared
- $P Set$ of participants
- => A qualified subsets of can reconstruct m

- Formally, secret sharing scheme allows share a secret m among n parties such that for a fixed number $t < n$, the following conditions are satisfied.
	- If < t parties get together, then they get no additional information about the secret.
	- If > t parties get together, then they can correctly reconstruct the secret

Project: Secret Sharing

- Verifiable Secret Sharing
	- [https://docs.google.com/spreadsheets/d/1iYJ0UNXLk5_1EMaMClZdwPr4hjuJb](https://docs.google.com/spreadsheets/d/1iYJ0UNXLk5_1EMaMClZdwPr4hjuJbdlu5uPYJuL9uBo/edit?usp=sharing) [dlu5uPYJuL9uBo/edit?usp=sharing](https://docs.google.com/spreadsheets/d/1iYJ0UNXLk5_1EMaMClZdwPr4hjuJbdlu5uPYJuL9uBo/edit?usp=sharing)
	- https://link.springer.com/chapter/10.1007/3-540-68339-9_17
	- [https://ieeexplore.ieee.org/abstract/document/4568297?casa_token=ORLzB8](https://ieeexplore.ieee.org/abstract/document/4568297?casa_token=ORLzB8c9LPsAAAAA:vsQtCX4nBzLU9d51nc-WWEUxwvOJp2jyBEqEXZ9fArV5D5iUS2toJByMvGY53gEmPVOPrjgV) [c9LPsAAAAA:vsQtCX4nBzLU9d51nc-](https://ieeexplore.ieee.org/abstract/document/4568297?casa_token=ORLzB8c9LPsAAAAA:vsQtCX4nBzLU9d51nc-WWEUxwvOJp2jyBEqEXZ9fArV5D5iUS2toJByMvGY53gEmPVOPrjgV)[WWEUxwvOJp2jyBEqEXZ9fArV5D5iUS2toJByMvGY53gEmPVOPrjgV](https://ieeexplore.ieee.org/abstract/document/4568297?casa_token=ORLzB8c9LPsAAAAA:vsQtCX4nBzLU9d51nc-WWEUxwvOJp2jyBEqEXZ9fArV5D5iUS2toJByMvGY53gEmPVOPrjgV)
	- [https://scholar.google.com/scholar?hl=en&as_sdt=0%2C3&q=Verifiable+Secre](https://scholar.google.com/scholar?hl=en&as_sdt=0%2C3&q=Verifiable+Secret+Sharing&btnG=) [t+Sharing&btnG=](https://scholar.google.com/scholar?hl=en&as_sdt=0%2C3&q=Verifiable+Secret+Sharing&btnG=)

One-time Pad

Provable Security

• Consider the attacker as a calling program to the following subroutine

CTXT $(m \in \Sigma \mathcal{M})$: $k \leftarrow \Sigma$. Key Gen $c := \Sigma$. Enc (k, m) return c

Provable Security

• Consider the attacker as a calling program to the following subroutine

$$
\begin{aligned}\n & \text{crxr}(m \in \Sigma \mathcal{M}): \\
 & k \leftarrow \Sigma \mathcal{K} \text{e} \text{yGen} \\
 & c := \Sigma \mathcal{E} \text{nc}(k, m) \\
 & \text{return } c\n \end{aligned}
$$

• "Real-vs-Random" Style of Security Definition

$$
\begin{array}{c}\n\text{crxr}(m \in \Sigma \mathcal{M})\text{:} \\
k \leftarrow \Sigma \text{.KeyGen} \\
c \text{ := } \Sigma \text{.Enc}(k, m) \\
\text{return } c\n\end{array}\n\quad \text{vs.} \quad\n\begin{array}{c}\n\text{crxr}(m \in \Sigma \mathcal{M})\text{:} \\
c \leftarrow \Sigma \mathcal{C} \\
\text{return } c\n\end{array}
$$

• An encryption scheme is a good one if the two implementations of ctxt induce identical behavior in every calling program (Uniform ctxs)

Provable Security: One-time Pad (Example)

Encryption Basics & Terminology

- "Symmetric" Encryption scheme:
	- KeyGen $()$ -> k
	- Enc (k,m) -> c
	- Dec(k,c) -> m
- Requirement: $Dec(k, Enc(k, m)) = m$

Provable Security

• "Real-vs-Random" Style of Security Definition

- An encryption scheme is a good one if the two implementations of ctxt induce identical behavior in every calling program (Uniform ctxs)
- \Rightarrow Security definitions for encryption capture the case where a key is used to encrypt only one plaintext.
- \Rightarrow It would be more useful to have an encryption scheme that allows many plaintexts to be encrypted under the same key

Encryption Basics & Terminology

• What if Alice sends Enc(k,m) twice?

Encryption Basics & Terminology

- What if Alice sends c=Enc(k,m) twice?
	- Eve can observe it

Security Against Chosen Plaintext Attacks (CPA)

• CPA Security Definition:

Let Σ be an encryption scheme. We say that Σ has **security against chosen-plaintext attacks (CPA security)** if $\mathcal{L}_{\text{cpa-L}}^{\Sigma} \approx \mathcal{L}_{\text{cpa-R}}^{\Sigma}$, where:

- CPA security is often called "IND-CPA" security, meaning "indistinguishability of ciphertexts under chosen-plaintext attack."
	- "CPA is a type of cryptanalysis where an attacker can choose some or all of the plaintext messages that are encrypted with a secret key. By analyzing the resulting ciphertexts, the attacker may be able to recover the key or some information about the plaintext."

https://www.linkedin.com/advice/0/what-common-types-methods-chosen-plaintext-attacks-how#:~:text=Chosen%2Dplaintext%20attacks%20are%20a,some%20information%20about%20the%20plaintext.

CPA-Security

- Deterministic encryption can never be CPA-secure
- Why?

Quiz Sample:

• Is 2OTP CPA-Secure?

 $\begin{array}{lll} \frac{2\textsf{OTP}(m\in\{0,1\}^\lambda)\text{:} }&\\ k_1\leftarrow\{0,1\}^\lambda &// \text{ Choose a random key } k_1 \text{ from } \{0,1\}^\lambda\\ k_2\leftarrow\{0,1\}^\lambda &// \text{ Choose a random key } k_2 \text{ from } \{0,1\}^\lambda \end{array}$ $c:=k_2\oplus (k_1\oplus m)$ return c

Security Against Chosen Plaintext Attacks (CPA)

Security Discussion

CPA: secure if Adversary chooses plaintext

• Cares about m ---> c direction

Security Against Chosen Ciphertext Attacks (CCA)

What if the adversary changes c?

Security Against Chosen Ciphertext Attacks (CCA)

- CCA Security Definition:
	- Goal: Can't learn what inside ciphertext c, even if you can decrypt anything other than c

Security Against Chosen Ciphertext Attacks (CCA)

Let Σ be an encryption scheme. We say that Σ has security against chosen-ciphertext **attacks (CCA security)** if $\mathcal{L}_{\text{cca-L}}^{\Sigma} \approx \mathcal{L}_{\text{cca-R}}^{\Sigma}$, where:

Security Discussion

CPA: secure if Adversary chooses plaintext

• Cares about m ---> c direction

CCA: secure if Adversary gets all of Dec(ctxt)

• Cares about c ---> m direction

Security Discussion

CPA: secure if Adversary chooses plaintext

• Cares about m ---> c direction

CCA: secure if Adversary gets all of Dec(ctxt)

- Cares about c ---> m direction
- In 1998, Daniel Bleichenbacher demonstrated a devastating attack against early versions of the SSL protocol. By presenting millions of carefully crafted ciphertexts to a webserver, an attacker could eventually recover arbitrary SSL session keys.

https://blog.cryptographyengineering.com/2016/03/01/attack-of-week-drown/