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About Me

● Educational/Career journey:  
○ 2016: B.S. in Mathematics, Bob Jones University
○ 2016 – 2020:  Ph.D. and M.S. in Mathematics, Clemson University
○ 2020 – current:  Research Scientist / SWE at Meta 

● Journey through Privacy Enhancing Technologies (PETs):
○ Fully Homomorphic Encryption (FHE)
○ Private Set Intersection (PSI)
○ Multi-Party Computation (MPC)
○ Differential Privacy (DP)



Outline for today

1. Problem we are trying to solve:  Private Ads Measurement for the Web
2. Two main designs

a. On-device 
b. Off-device 

3. Differential Privacy for output privacy
4. Takeaways about work in industry



Advertising Measurement

Headline News
Lorem ipsum dolor sit amet, 
consectetur adipiscing elit. 
Proin et sem sed metus feugiat 
porta. Donec pulvinar sem nec 
leo aliquam tincidunt. Curabitur 
ut auctor orci. Maecenas augue 
nisi, tincidunt non erat id, 
convallis tincidunt ante. 

Ut id turpis vel sapien fringilla 
viverra. Donec sed ligula nisl. 
Nunc sit amet pharetra dolor, 
quis interdum orci.

Sunglasses!

https://sunglasses.example

Product Description
Suspendisse varius, metus eget vehicula 
pulvinar, urna nibh gravida orci, in volutpat 
ligula purus vitae risus. Morbi feugiat ultricies 
nisl, blandit pharetra felis ornare quis. 

Add to Cart

$39.99

Free shipping on orders 
over $50.

● Conversion Rate
● Cost per Conversion
● Return on Ad Spend



Outputs we want to see – Measurement



History of Proposals

• “Privacy Preserving Ad Click Attribution For the Web”
• May 22, 2019 by John Wilander (Apple)
• Later renamed “Private Click Measurement” (PCM)

• “Building a more private web”
• Aug 22, 2019 by Justin Schuh (Google)
• Later renamed “Attribution Reporting API” (ARA)

• “Privacy Preserving Attribution for Advertising”
• Feb 8, 2022 by Martin Thomson (Mozilla)
• Always known as “Interoperable Private Attribution” (IPA)

• “Private Ad Measurement explainer”
• Aug 28, 2023 by Luke Winstrom (Apple)



Threat Model 

- Designed not to reveal people’s cross 
context site activity; even in the face of 
malicious adversaries.

- Assume both Publisher and Advertiser 
sites are colluding

- Any MPC involved should have no 
single trusted parties.



Two major design paradigms 

On-device attribution

● Device collects ad impressions and then 
checks to see if a new conversion is 
attributed to one

● Sends back secret shares of the result 
encrypted under the public keys of MPC 
helper parties. 

● Publishers and advertisers can submit these 
reports from many users grouped by different 
user properties to the MPC to have them 
aggregated

Off-device attribution

● Device generates an consistent identifier 
which is encrypted and sent to different sites. 

● Sites can append data to this identifier 
(purchase value, breakdowns)

● Sites submit to an MPC which does the full 
computation of attribution and aggregation



Some background … Additive Secret Sharing

let secret = 8;

let p = 31;

let share_a = RandBetween(0, p);

let share_b = Mod(secret - share_a, p);

share_a and share_b and are randomly distributed numbers in the range [0, 31). If you possess just one, or 
even two of them, you know absolutely nothing about the secret value. 

share_a + share_b = secret



Additive Secret Sharing–Addition

You have secrets: secret_1, secret_2,...,secret_n

Create shares of them secret_i_a and secret_i_b give to Parties A and B. 

Then if Party A sums sums all of their shares

sum_a = sum { secret_i_a for all i} (computed modulo p)

And Party B sums all of their shares 

sum_b = sum { secret_i_b for all i } (computed modulo p)

Then 

sum_a + sum_b = sum {secect_i for all i} 



On-device:  Apple’s Private Ads 
Measurement



OS on device processing

Ad ConversionAd Impressions

Customizable ad-attribution logic

Breakdown contributions 
from attributed ad(s)

Secret-share #1 Secret-share #2

Helper party #2Helper party #1 

Predefined 
Configuration

DP budget 
management



Helper Party #2Helper Party #1

OS on device processingSecret-share #1 Secret-share #2

Noisy sum of half the shares

Cumulative Sum

Sum of half the shares

Cumulative Sum

Addition

Predefined 
Configuration

Breakdowns with noisy totals

Sum of half the shares

Zero-knowledge proof (interactive) to prevent poisoning of results

Add Central DP noise✝ 

✝ Underspecified. Unclear if it’s just one party adding noise or an interactive protocol



Ad Impression #1 
occurs

Advertiser-side
Preconfigured config for 
this “conversion ID”

● Cross-publisher 
and multi-touch 
logic

● Campaign ID => 
breakdown key 
config

Ad Conversion 
occurs

Secret-shares 
sent out

Shares of non-zero 
breakdown contribution

Ad Impression #2 
occurs



Advertiser-side
Preconfigured config for 
this “conversion ID”

● Cross-publisher 
and multi-touch 
logic

● Campaign ID => 
breakdown key 
config

Ad Conversion 
occurs

Secret-shares 
sent out

Shares of zero 
(or non-zero to “unattributed” bucket)



Ad Impression 
occurs

Publisher-side 
Preconfigured config for 
this “conversion ID”

● Send reports at:
○ 1 hr
○ 6 hr
○ 1 day
○ 7 days
○ 28 days

Ad Conversion 
occurs

Secret-shares 
sent out

1 hr 6 hr 1 day

Secret-shares 
sent out

Secret-shares 
sent out

Shares of zero 
Shares of non-zero 

breakdown contribution

7 days

Secret-shares 
sent out

Shares of zero



Collect and Aggregate

● Publishers and Advertisers collect these reports and then when they have 
enough they submit them to an MPC to have them aggregated. 

● Differentially Private noise will be added to each sum, so the more reports 
they wait for the better signal-to-noise ratio they can get. 



Wait less, worse 
signal-to-noise ratio

Wait longer, better 
signal-to-noise ratio



Off-device:  Interoperable Private 
Attribution



Recall our additive secret sharing…now with 3 parties

let secret = 8;

let p = 31;

let share_1 = RandBetween(0, p);

let share_2 = RandBetween(0, p);

let share_3 = Mod(secret - share_1 - share_2, p);

All of share_1, share_2 and share_3 are randomly distributed numbers in the 
range [0, 31). If you possess just one, or even two of them, you know absolutely 
nothing about the secret value. 



Replicated Secret 
Sharing 

Helper 1: (share_1, share_2)

Helper 2: (share_2, share_3)

Helper 3: (share_3, share_1)

Consider the “additive secret sharing” from the last 
slide, and give each helper two of the three shares

That’s not enough information for any one helper to 
reconstruct the secret

This can make multiplication much simpler

Our current prototypes use this type of secret sharing



Multiplication with replicated secret shares

Suppose 3 parties hold replicated secret sharings of secret 
values x and y

● Helper 1: (share_x_1, share_x_2); (share_y_1, share_y_2)

● Helper 2: (share_x_2, share_x_3); (share_y_2, share_y_3)

● Helper 3: (share_x_3, share_x_1); (share_y_3, share_y_1)

●



Performance

● The bottleneck in such systems tends to be communication between the MPC 
helper nodes

● CPU tends not to be a bottleneck
● Addition of secret shared numbers requires no communication between the 

nodes
● Multiplication of secret shared numbers does require communication 

between the nodes
● So it’s important to minimize the number of multiplications you need to do



The cost of a multiplication

In the honest majority with 3 parties setting, the communication cost of performing 
a multiplication is:

Semi-honest setting: 1 number exchanged per helper

Malicious setting: 2 numbers exchanged per helper

● Upgrades to malicious in dishonest majority are ~10x the semi-honest cost



getEncryptedMatchKey(provider)

fn get_encrypted_match_key(provider) -> [CipherText; 3] {
        (
        Encrypt(pk_1, mk_share_1,mk_share_2), 
        Encrypt(pk_2, mk_share_2,mk_share_3), 
        Encrypt(pk_3, mk_share_3,mk_share_1)
    )
}
where pk_i is the ith Helper Party’s public key.



Publisher and Advertiser Sites

Match Key Provider 1110101001010100

news.example 101… 011… 001…
������

sunglasses.example 010… 111… 010…
������

1110101001010100



Report Collector

101… 011… 001…
������

010… 111… 010…
������

Publisher Site:

Advertiser Site:

Report Collector:
010… 101… 110…
������Campaign: 12

Campaign: 92

Value: $25

ts: 06:32

ts: 09:15

ts: 07:41

100… 011… 000…
������

Value: $12 ts: 11:04

… … … … …

… … … … …

101… 011… 001…
������

010… 111… 010…
������Campaign: 12

Value: $25

ts: 06:32

ts: 07:41

100… 011… 000…Value: $12 ts: 11:04

… … … … …

010… 101… 110…
������

Campaign: 92 ts: 09:15 ������



Helper Party #3:Helper Party #2:

Helper Party Networks

Helper Party #1:
101… 011… 001…
�� �� ��

010… 111… 010…
�� �� ��

100… 011… 000…

… … …

010… 101… 110…
�� �� ��
�� �� ��

282…

373…

926…

162…

365…

712…

410…

835…

1

1

0

1

173…

960…

621…

379…

013…

635…

835…

197…

0

1

0

0

579…

811…

880…

292…

793…

544…

419…

437…

1

1

0

0

Report Collector



Capped Contribution

9

1 2 3 4 5

2

1 2 3 4 5

8

1 2 3 4 5

Campaign: 5

Campaign: 1

Value: 1

Campaign: 5

Campaign: 1

Campaign: 3

Value: 8

Value: 8

Value: 4

Ideal Functionality

Last Touch

Last Touch

Campaign: 3

Value: 9

Campaign: 2

Campaign: 1

Value: 1 1

1 2 3 4 5

Time

Advertiser ReportsPublisher Reports



9

2

8

Ideal Functionality

1

-2 4 1 -2 20

1 2 3 4 5

∑ ∑ ∑ ∑ ∑

-3 4 -1 -2 3

All Capped Contributions

Generate Differentially Private Noise

Aggregate

Release Output Histogram



How the updated MPC protocol works

1. First, helpers receive a big list of secret shared events
2. Next, they sort these events by match_key, then timestamp
3. Then, they run an “oblivious attribution algorithm” over these events
4. At this point, we need to “cap” the maximum contribution each individual 

person can contribute to the output
5. Then, they sum up the secret shared “conversion values” (per breakdown 

key)
6. After this, they generate some random noise and add it to these totals
7. Finally, they “reveal” these totals to the API caller (i.e., give them all 3 shares)



Oblivious Attribution Algorithms

● In principle, almost any type of attribution heuristic is possible
○ Only limited by the data that is provided in events
○ Simple multi-touch (e.g. equal credit last 3 touches) is definitely possible
○ Addition is cheap
○ Multiplication is a little expensive
○ Division / exponentiation / etc. is going to cost you =)

● We have shared a specific algorithm which performs “last-touch attribution”
○ It only requires addition and multiplication
○ It’s very inexpensive; only requiring a few multiplications per event



Explaining Differential 
Privacy



Privacy Example

Suppose you are a student needing to do teacher evaluations. 

● “Would you want to take a class with this professor again?”  Yes/No

Suppose there are 10 students in the class

You don’t like your professor. Plan to respond “No” … but you do NOT want your 
professor to know how you answered this question. 

The department adds up all the responses of 10 students and discloses the total.

Does that preserve your privacy? 



K-anonymity 

This is called K-anonymity; in this example K=10.

Think of it as “hiding in the crowd” – most of the time this is just fine. 

Imagine the total is 4. 

If that is the ONLY information your professor gets, that there were 4 people who 
would not want to take a class with her again, then your privacy is preserved. She 
can’t know how you voted. 



Differential Privacy is a pessimist

Differential Privacy is focused on worst case scenario if everything went wrong

Worst case scenario:

- What if all 10 people voted “No”.  Then the total would be 0…and your 
professor would know exactly how ALL students voted

- What if the department also disclosed the “Total from people who’ve been 
enrolled more than a year”, and that was the other 9 people…

- …and that total was also 4…
- Even though both statistics were from a group of at least 9 people, your 

professor can learn exactly how you voted by subtracting the two totals



Differential Privacy is all about protecting your privacy even in these kinds 
of worst case scenarios!

- The way to do that, is to add some randomness to the total
- The randomness can sort of “mask” any one person’s contributions.
- You can hide in the random noise!



Updated example

- The department takes the accurate total, and then they flip 5 coins.
- They add on the number of “heads”.
- They report this total



Let’s say the total is now “6”...how should we think about what that means?

We know that the actual number of people who voted “Yes” is somewhere 
between 1 and 6.  

- The minimum is 1, because even if all 5 coins here “heads” we are max 
adding 5

- The maximum is 6. If 6 people all voted “yes”, and we got 5 “tails”, the answer 
would be 6.

 



Not all outcomes equally likely



Worst case scenario, revisited 

- As mentioned earlier, K-anon fails if everyone votes “No” and the total is 0.
- What would happen now?
- Instead of reporting 0, our new “differentially private” system would flip 5 coins 

and add the number of heads to that total. So we would wind up reporting 
something between 0 and 5. 

- What’s the worst case scenario? We get “tails” 5 times in a row, and the total 
is still 0.

- OK, in this case the system still failed, but now it’s a LOT less likely. There 
was only a 1 in 32 chance that you’ll get 5 “tails” in a row.



What’s the worst case scenario where it didn’t fail completely?

Suppose the professor knows all the other 9 students voted “Yes”. The result is 14. 
You voted “No”.  The professor can’t learn for sure what you voted but can see 
how likely it was you voted “No” or “Yes”

● Case 1: You voted “Yes” and 4 coins heads
● Case 2: You voted “No” and 5 coins heads

Prob(Case 1) / Prob(Case 2) = 5 

What is more likely? It is more likely that you voted “No” – 5 times more likely. 
Your professor knows it is 5 times more likely that you said “No” than “Yes”



This “5x ratio” is important here.  This tells us how much differential privacy you 
have.  How much plausible deniability you have. 



Pure Differential Privacy



Approximate Differential Privacy

In our example, you had privacy preserved with e^epsilon = 5 or epsilon = 1.609.  
Also delta was 1/32.    



Takeaways

1. System design – need to understand the actual problem deeply to design 
an impactful solution 

2. Cryptography and PETs are valuable tools – learn all you can!
3. Working in industry

a. Focused on having real world impact
b. Shifting focus to follow the most important things – enjoy learning 

new things!
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