
Designing Private Ads Measurement
for the Web
Guest Lecture for Ni Trieu’s Cryptography Class
11/1/2023

Team Effort

Ben Savage
(Meta)

Erik Taubeneck
(Meta)

Martin Thomson
(Mozilla)

Richa Jain
(Meta)

Taiki Yamaguchi
(Meta, fmr)

Alex Koshelev
(Meta)

Andy Leiserson
(Mozilla)

Victor Miller
(Meta, fmr)

Daniel Masny
(Meta)

Benjamin Case
(Meta)

About Me

● Educational/Career journey:
○ 2016: B.S. in Mathematics, Bob Jones University
○ 2016 – 2020: Ph.D. and M.S. in Mathematics, Clemson University
○ 2020 – current: Research Scientist / SWE at Meta

● Journey through Privacy Enhancing Technologies (PETs):
○ Fully Homomorphic Encryption (FHE)
○ Private Set Intersection (PSI)
○ Multi-Party Computation (MPC)
○ Differential Privacy (DP)

Outline for today

1. Problem we are trying to solve: Private Ads Measurement for the Web
2. Two main designs

a. On-device
b. Off-device

3. Differential Privacy for output privacy
4. Takeaways about work in industry

Advertising Measurement

Headline News
Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Proin et sem sed metus feugiat
porta. Donec pulvinar sem nec
leo aliquam tincidunt. Curabitur
ut auctor orci. Maecenas augue
nisi, tincidunt non erat id,
convallis tincidunt ante.

Ut id turpis vel sapien fringilla
viverra. Donec sed ligula nisl.
Nunc sit amet pharetra dolor,
quis interdum orci.

Sunglasses!

https://sunglasses.example

Product Description
Suspendisse varius, metus eget vehicula
pulvinar, urna nibh gravida orci, in volutpat
ligula purus vitae risus. Morbi feugiat ultricies
nisl, blandit pharetra felis ornare quis.

Add to Cart

$39.99

Free shipping on orders
over $50.

● Conversion Rate
● Cost per Conversion
● Return on Ad Spend

Outputs we want to see – Measurement

History of Proposals

• “Privacy Preserving Ad Click Attribution For the Web”
• May 22, 2019 by John Wilander (Apple)
• Later renamed “Private Click Measurement” (PCM)

• “Building a more private web”
• Aug 22, 2019 by Justin Schuh (Google)
• Later renamed “Attribution Reporting API” (ARA)

• “Privacy Preserving Attribution for Advertising”
• Feb 8, 2022 by Martin Thomson (Mozilla)
• Always known as “Interoperable Private Attribution” (IPA)

• “Private Ad Measurement explainer”
• Aug 28, 2023 by Luke Winstrom (Apple)

Threat Model

- Designed not to reveal people’s cross
context site activity; even in the face of
malicious adversaries.

- Assume both Publisher and Advertiser
sites are colluding

- Any MPC involved should have no
single trusted parties.

Two major design paradigms

On-device attribution

● Device collects ad impressions and then
checks to see if a new conversion is
attributed to one

● Sends back secret shares of the result
encrypted under the public keys of MPC
helper parties.

● Publishers and advertisers can submit these
reports from many users grouped by different
user properties to the MPC to have them
aggregated

Off-device attribution

● Device generates an consistent identifier
which is encrypted and sent to different sites.

● Sites can append data to this identifier
(purchase value, breakdowns)

● Sites submit to an MPC which does the full
computation of attribution and aggregation

Some background … Additive Secret Sharing

let secret = 8;

let p = 31;

let share_a = RandBetween(0, p);

let share_b = Mod(secret - share_a, p);

share_a and share_b and are randomly distributed numbers in the range [0, 31). If you possess just one, or
even two of them, you know absolutely nothing about the secret value.

share_a + share_b = secret

Additive Secret Sharing–Addition

You have secrets: secret_1, secret_2,...,secret_n

Create shares of them secret_i_a and secret_i_b give to Parties A and B.

Then if Party A sums sums all of their shares

sum_a = sum { secret_i_a for all i} (computed modulo p)

And Party B sums all of their shares

sum_b = sum { secret_i_b for all i } (computed modulo p)

Then

sum_a + sum_b = sum {secect_i for all i}

On-device: Apple’s Private Ads
Measurement

OS on device processing

Ad ConversionAd Impressions

Customizable ad-attribution logic

Breakdown contributions
from attributed ad(s)

Secret-share #1 Secret-share #2

Helper party #2Helper party #1

Predefined
Configuration

DP budget
management

Helper Party #2Helper Party #1

OS on device processingSecret-share #1 Secret-share #2

Noisy sum of half the shares

Cumulative Sum

Sum of half the shares

Cumulative Sum

Addition

Predefined
Configuration

Breakdowns with noisy totals

Sum of half the shares

Zero-knowledge proof (interactive) to prevent poisoning of results

Add Central DP noise✝

✝ Underspecified. Unclear if it’s just one party adding noise or an interactive protocol

Ad Impression #1
occurs

Advertiser-side
Preconfigured config for
this “conversion ID”

● Cross-publisher
and multi-touch
logic

● Campaign ID =>
breakdown key
config

Ad Conversion
occurs

Secret-shares
sent out

Shares of non-zero
breakdown contribution

Ad Impression #2
occurs

Advertiser-side
Preconfigured config for
this “conversion ID”

● Cross-publisher
and multi-touch
logic

● Campaign ID =>
breakdown key
config

Ad Conversion
occurs

Secret-shares
sent out

Shares of zero
(or non-zero to “unattributed” bucket)

Ad Impression
occurs

Publisher-side
Preconfigured config for
this “conversion ID”

● Send reports at:
○ 1 hr
○ 6 hr
○ 1 day
○ 7 days
○ 28 days

Ad Conversion
occurs

Secret-shares
sent out

1 hr 6 hr 1 day

Secret-shares
sent out

Secret-shares
sent out

Shares of zero
Shares of non-zero

breakdown contribution

7 days

Secret-shares
sent out

Shares of zero

Collect and Aggregate

● Publishers and Advertisers collect these reports and then when they have
enough they submit them to an MPC to have them aggregated.

● Differentially Private noise will be added to each sum, so the more reports
they wait for the better signal-to-noise ratio they can get.

Wait less, worse
signal-to-noise ratio

Wait longer, better
signal-to-noise ratio

Off-device: Interoperable Private
Attribution

Recall our additive secret sharing…now with 3 parties

let secret = 8;

let p = 31;

let share_1 = RandBetween(0, p);

let share_2 = RandBetween(0, p);

let share_3 = Mod(secret - share_1 - share_2, p);

All of share_1, share_2 and share_3 are randomly distributed numbers in the
range [0, 31). If you possess just one, or even two of them, you know absolutely
nothing about the secret value.

Replicated Secret
Sharing

Helper 1: (share_1, share_2)

Helper 2: (share_2, share_3)

Helper 3: (share_3, share_1)

Consider the “additive secret sharing” from the last
slide, and give each helper two of the three shares

That’s not enough information for any one helper to
reconstruct the secret

This can make multiplication much simpler

Our current prototypes use this type of secret sharing

Multiplication with replicated secret shares

Suppose 3 parties hold replicated secret sharings of secret
values x and y

● Helper 1: (share_x_1, share_x_2); (share_y_1, share_y_2)

● Helper 2: (share_x_2, share_x_3); (share_y_2, share_y_3)

● Helper 3: (share_x_3, share_x_1); (share_y_3, share_y_1)

●

Performance

● The bottleneck in such systems tends to be communication between the MPC
helper nodes

● CPU tends not to be a bottleneck
● Addition of secret shared numbers requires no communication between the

nodes
● Multiplication of secret shared numbers does require communication

between the nodes
● So it’s important to minimize the number of multiplications you need to do

The cost of a multiplication

In the honest majority with 3 parties setting, the communication cost of performing
a multiplication is:

Semi-honest setting: 1 number exchanged per helper

Malicious setting: 2 numbers exchanged per helper

● Upgrades to malicious in dishonest majority are ~10x the semi-honest cost

getEncryptedMatchKey(provider)

fn get_encrypted_match_key(provider) -> [CipherText; 3] {
 (
 Encrypt(pk_1, mk_share_1,mk_share_2),
 Encrypt(pk_2, mk_share_2,mk_share_3),
 Encrypt(pk_3, mk_share_3,mk_share_1)
)
}
where pk_i is the ith Helper Party’s public key.

Publisher and Advertiser Sites

Match Key Provider 1110101001010100

news.example 101… 011… 001…
������

sunglasses.example 010… 111… 010…
������

1110101001010100

Report Collector

101… 011… 001…
������

010… 111… 010…
������

Publisher Site:

Advertiser Site:

Report Collector:
010… 101… 110…
������Campaign: 12

Campaign: 92

Value: $25

ts: 06:32

ts: 09:15

ts: 07:41

100… 011… 000…
������

Value: $12 ts: 11:04

… … … … …

… … … … …

101… 011… 001…
������

010… 111… 010…
������Campaign: 12

Value: $25

ts: 06:32

ts: 07:41

100… 011… 000…Value: $12 ts: 11:04

… … … … …

010… 101… 110…
������

Campaign: 92 ts: 09:15 ������

Helper Party #3:Helper Party #2:

Helper Party Networks

Helper Party #1:
101… 011… 001…
�� �� ��

010… 111… 010…
�� �� ��

100… 011… 000…

… … …

010… 101… 110…
�� �� ��
�� �� ��

282…

373…

926…

162…

365…

712…

410…

835…

1

1

0

1

173…

960…

621…

379…

013…

635…

835…

197…

0

1

0

0

579…

811…

880…

292…

793…

544…

419…

437…

1

1

0

0

Report Collector

Capped Contribution

9

1 2 3 4 5

2

1 2 3 4 5

8

1 2 3 4 5

Campaign: 5

Campaign: 1

Value: 1

Campaign: 5

Campaign: 1

Campaign: 3

Value: 8

Value: 8

Value: 4

Ideal Functionality

Last Touch

Last Touch

Campaign: 3

Value: 9

Campaign: 2

Campaign: 1

Value: 1 1

1 2 3 4 5

Time

Advertiser ReportsPublisher Reports

9

2

8

Ideal Functionality

1

-2 4 1 -2 20

1 2 3 4 5

∑ ∑ ∑ ∑ ∑

-3 4 -1 -2 3

All Capped Contributions

Generate Differentially Private Noise

Aggregate

Release Output Histogram

How the updated MPC protocol works

1. First, helpers receive a big list of secret shared events
2. Next, they sort these events by match_key, then timestamp
3. Then, they run an “oblivious attribution algorithm” over these events
4. At this point, we need to “cap” the maximum contribution each individual

person can contribute to the output
5. Then, they sum up the secret shared “conversion values” (per breakdown

key)
6. After this, they generate some random noise and add it to these totals
7. Finally, they “reveal” these totals to the API caller (i.e., give them all 3 shares)

Oblivious Attribution Algorithms

● In principle, almost any type of attribution heuristic is possible
○ Only limited by the data that is provided in events
○ Simple multi-touch (e.g. equal credit last 3 touches) is definitely possible
○ Addition is cheap
○ Multiplication is a little expensive
○ Division / exponentiation / etc. is going to cost you =)

● We have shared a specific algorithm which performs “last-touch attribution”
○ It only requires addition and multiplication
○ It’s very inexpensive; only requiring a few multiplications per event

Explaining Differential
Privacy

Privacy Example

Suppose you are a student needing to do teacher evaluations.

● “Would you want to take a class with this professor again?” Yes/No

Suppose there are 10 students in the class

You don’t like your professor. Plan to respond “No” … but you do NOT want your
professor to know how you answered this question.

The department adds up all the responses of 10 students and discloses the total.

Does that preserve your privacy?

K-anonymity

This is called K-anonymity; in this example K=10.

Think of it as “hiding in the crowd” – most of the time this is just fine.

Imagine the total is 4.

If that is the ONLY information your professor gets, that there were 4 people who
would not want to take a class with her again, then your privacy is preserved. She
can’t know how you voted.

Differential Privacy is a pessimist

Differential Privacy is focused on worst case scenario if everything went wrong

Worst case scenario:

- What if all 10 people voted “No”. Then the total would be 0…and your
professor would know exactly how ALL students voted

- What if the department also disclosed the “Total from people who’ve been
enrolled more than a year”, and that was the other 9 people…

- …and that total was also 4…
- Even though both statistics were from a group of at least 9 people, your

professor can learn exactly how you voted by subtracting the two totals

Differential Privacy is all about protecting your privacy even in these kinds
of worst case scenarios!

- The way to do that, is to add some randomness to the total
- The randomness can sort of “mask” any one person’s contributions.
- You can hide in the random noise!

Updated example

- The department takes the accurate total, and then they flip 5 coins.
- They add on the number of “heads”.
- They report this total

Let’s say the total is now “6”...how should we think about what that means?

We know that the actual number of people who voted “Yes” is somewhere
between 1 and 6.

- The minimum is 1, because even if all 5 coins here “heads” we are max
adding 5

- The maximum is 6. If 6 people all voted “yes”, and we got 5 “tails”, the answer
would be 6.

Not all outcomes equally likely

Worst case scenario, revisited

- As mentioned earlier, K-anon fails if everyone votes “No” and the total is 0.
- What would happen now?
- Instead of reporting 0, our new “differentially private” system would flip 5 coins

and add the number of heads to that total. So we would wind up reporting
something between 0 and 5.

- What’s the worst case scenario? We get “tails” 5 times in a row, and the total
is still 0.

- OK, in this case the system still failed, but now it’s a LOT less likely. There
was only a 1 in 32 chance that you’ll get 5 “tails” in a row.

What’s the worst case scenario where it didn’t fail completely?

Suppose the professor knows all the other 9 students voted “Yes”. The result is 14.
You voted “No”. The professor can’t learn for sure what you voted but can see
how likely it was you voted “No” or “Yes”

● Case 1: You voted “Yes” and 4 coins heads
● Case 2: You voted “No” and 5 coins heads

Prob(Case 1) / Prob(Case 2) = 5

What is more likely? It is more likely that you voted “No” – 5 times more likely.
Your professor knows it is 5 times more likely that you said “No” than “Yes”

This “5x ratio” is important here. This tells us how much differential privacy you
have. How much plausible deniability you have.

Pure Differential Privacy

Approximate Differential Privacy

In our example, you had privacy preserved with e^epsilon = 5 or epsilon = 1.609.
Also delta was 1/32.

Takeaways

1. System design – need to understand the actual problem deeply to design
an impactful solution

2. Cryptography and PETs are valuable tools – learn all you can!
3. Working in industry

a. Focused on having real world impact
b. Shifting focus to follow the most important things – enjoy learning

new things!

References

1. Interoperable Private Attribution:
https://github.com/patcg-individual-drafts/ipa

2. Apple’s Private Ad Attribution:
https://github.com/patcg-individual-drafts/private-ad-measurement

3. Differential Privacy: http://www.gautamkamath.com/CS860-fa2020.html

https://github.com/patcg-individual-drafts/ipa
https://github.com/patcg-individual-drafts/private-ad-measurement
http://www.gautamkamath.com/CS860-fa2020.html

