

Conference on Applied Machine Learning for Information Security (CAMLIS) 2024 October 24-25, 2024, Arlington, VA

Curl: Private LLMs through Wavelet-Encoded Look-Up Tables

Manuel B. Santos¹, **Dimitris Mouris**¹, Mehmet Ugurbil¹, Stanislaw Jarecki^{1,2}, José Reis¹, Shubho Sengupta³ and Miguel de Vega¹

{ manuel.santos, dimitris, memo, stanislaw.jarecki, jose.reis, miguel }@nillion.com

ssengupta@meta.com

MPC for Machine Learning

Servers maintain a private sum

Non-Linear Functions in MPC

MPC protocols cannot evaluate **non-linearities** directly!

→Boolean (aka garbled) circuits can be used but are big and expensive.

e used but are big 422-01 422-0 LD-

→Polynomial Approximations can be used but are slow (high communication) and introduce big approximation errors.

SOTA MPC protocols evaluate non-linearities as lookup tables (LUTs), but LUTs scale poorly for high precision \rightarrow very high communication

The Curl Framework

- Construct smaller LUTs without sacrificing accuracy
 - Using Discrete Wavelet Transforms (DWT)
- MPC-tailored protocols for evaluating DWT LUTs:
 - Haar DWT: faster, higher errors
 - Biorthogonal DWT: slower, lower errors
- Experiments over a suite of commonly used non-linear functions + LLMs.

Discrete Wavelet Transform (DWT)

Smooth part of **s** remains unchanged!

Details can be set to zero!

Bounded & S-Shaped Functions

Evaluations: Approximations

Evaluations: Running LLMs in seconds

Sequence length = 64	Model	Latency (s)	Rounds	Com. (GB)
	BERT Tiny	3.55	409	1.34
	BERT Base	13.63	$1,\!629$	2.8
	BERT Large	33.93	3,093	5.66
	GPT-2	16.61	$1,\!630$	3.77
	GPT-Neo	103.4	$3,\!118$	14.9
BERT Base				
(seq. len = 128)	Framework	Latency (s)) Rounds	Com. (GB)
	and the second second second	1.525		

Conclusions

- Lookup Tables (LUTs) can be used to evaluate non-linear functions in MPC
 - LUTs scale poorly for high precision \rightarrow enormous communication.
 - Polynomial approximations and quantization yield low accuracy!
- **Curl:** smaller LUTs without sacrificing accuracy
 - Using Discrete Wavelet Transforms (DWT) \rightarrow **low communication**
 - Reduced LUT sizes \rightarrow high accuracy
 - Run LLMs (BERT Tiny/Base/Large, GPT-2, GPT Neo) \rightarrow in seconds!
- Curl's technique can enhance related works and even FHE (e.g., Ripple [1])

[1] C. Gouert, M. Ugurbil, D. Mouris, M. de Vega, and N. G. Tsoutsos. **Ripple: Accelerating Programmable Bootstraps for FHE with Wavelet Approximations.** In International Conference on Information Security (ISC), 2024.

Conference on Applied Machine Learning for Information Security (CAMLIS) 2024 October 24-25, 2024, Arlington, VA

Curl: Private LLMs through Wavelet-Encoded Look-Up Tables

Manuel B. Santos¹, **Dimitris Mouris**¹, Mehmet Ugurbil¹, Stanislaw Jarecki^{1,2}, José Reis¹, Shubho Sengupta³ and Miguel de Vega¹

{ manuel.santos, dimitris, memo, stanislaw.jarecki, jose.reis, miguel }@nillion.com

ssengupta@meta.com

