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WHY DO PRIVACY PRESERVING CLUSTERING?
▪ What is clustering?

▪ The process of grouping a set of objects into classes of similar objects
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WHY DO PRIVACY PRESERVING CLUSTERING?
▪ What is clustering?

▪ The process of grouping a set of objects into classes of similar objects

▪ Why is privacy preserving clustering important?

▪ Data comes from different sources: transaction, genome 

▪ Privacy concern
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THIS WORK: TWO-SERVER MODEL

• Our scheme:

• More efficient than previous work

• Scale to large datasets 

server server

two party computation

model

= +

Trans. records
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▪ K-mean clustering 𝑂(𝑛𝑚𝑡), where dataset size n, number clusters m, number iterations t

▪ Hierarchical clustering 𝑂(𝑛2 log 𝑛)

▪ K-mean clustering is faster than hierarchical clustering

▪ K-mean clustering is widely used in many applications

CLUSTERING ALGORITHMS
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𝑚 ≪ 𝑛 and t ≪ 𝑛 

This work



▪ Privacy-preserving K-mean Clustering has received less attention than 
other supervised ML problems

▪ Previous work […,XHYCZ17, JA18]

▪ Not provide a full privacy guarantee (e.g. reveal the intermediate 
cluster centers)

▪ and/or heavy on public key operations

 inefficient when the dataset is large.

▪ Our work:

▪ Full privacy guarantee

▪ Based on symmetric key operations 

▪ Efficient secure Euclidean distance

▪ Customized minimum circuit on shared values

▪ K-means clustering 

  5 orders of magnitude faster than prior work

PRIVACY-PRESERVING K-MEAN CLUSTERING
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dist([𝑑𝑖], [𝑐𝑘]) 

𝑐1

𝑐2

𝑐3

PRIVACY-PRESERVING K-MEANS CLUSTERING 
▪ Inputs: 

▪ Secret shared dataset as {[𝑑1], … , [𝑑𝑛]} 

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]} 

▪ Until clustering converges (or other 
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance 
between 𝒅𝒊 and 𝒄𝒌 as 
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])
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dist([𝑑𝑖], [𝑐𝑘]) 

𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]

PRIVACY-PRESERVING K-MEANS CLUSTERING 
▪ Inputs: 

▪ Secret shared dataset as {[𝑑1], … , [𝑑𝑛]} 

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]} 

▪ Until clustering converges (or other 
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance 
between 𝒅𝒊 and 𝒄𝒌 as 
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

          [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]
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dist([𝑑𝑖], [𝑐𝑘]) 
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING 

▪ Inputs: 

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]} 

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]} 

▪ Until clustering converges (or other 
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance 
between 𝒅𝒊 and 𝒄𝒌 as 
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

          [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the 
closest cluster center 𝒌∗
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dist([𝑑𝑖], [𝑐𝑘]) 
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING 

▪ Inputs: 

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]} 

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]} 

▪ Until clustering converges (or other 
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance 
between 𝒅𝒊 and 𝒄𝒌 as 
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

          [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the 
closest cluster center 𝒌∗
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dist([𝑑𝑖], [𝑐𝑘]) 
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING 

▪ Inputs: 

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]} 

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]} 

▪ Until clustering converges (or other 
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance 
between 𝒅𝒊 and 𝒄𝒌 as 
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

          [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the 
closest cluster center 𝒌∗

▪ For each cluster 𝒄𝒌:

▪ Compute the average of the 
points assigned to the cluster as

𝒄𝒌
′ = 𝒂𝒗𝒈 [𝒅𝒊] , 𝒅𝒊 ∈ 𝑪𝒌

𝑐′1
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dist([𝑑𝑖], [𝑐𝑘]) 
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING 

▪ Inputs: 

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]} 

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]} 

▪ Until clustering converges (or other 
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance 
between 𝒅𝒊 and 𝒄𝒌 as 
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

          [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the 
closest cluster center 𝒌∗

▪ For each cluster 𝒄𝒌:

▪ Compute the average of the 
points assigned to the cluster as

𝒄𝒌
′ = 𝒂𝒗𝒈 [𝒅𝒊] , 𝒅𝒊 ∈ 𝑪𝒌

▪ Update 𝒄𝒌 =  𝒄𝒌
′ 12



dist([𝑑𝑖], [𝑐𝑘]) 
𝑑

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING 

▪ Inputs: 

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]} 

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]} 

▪ Until clustering converges (or other 
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance 
between 𝒅𝒊 and 𝒄𝒌 as 
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

          [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the 
closest cluster center 𝒌∗

▪ For each cluster 𝒄𝒌:

▪ Compute the average of the 
points assigned to the cluster as

𝒄𝒌
′ = 𝒂𝒗𝒈 [𝒅𝒊] , 𝒅𝒊 ∈ 𝑪𝒌

▪ Update 𝒄𝒌 =  𝒄𝒌
′ 13



dist([𝑑𝑖], [𝑐𝑘]) 
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING 

▪ Inputs: 

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]} 

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]} 

▪ Until clustering converges (or other 
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance 
between 𝒅𝒊 and 𝒄𝒌 as 
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

          [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the 
closest cluster center 𝒌∗

▪ For each cluster 𝒄𝒌:

▪ Compute the average of the 
points assigned to the cluster as

𝒄𝒌
′ = 𝒂𝒗𝒈 [𝒅𝒊] , 𝒅𝒊 ∈ 𝑪𝒌

▪ Update 𝒄𝒌 =  𝒄𝒌
′

Questions:

1. How to securely compute Euclidian distance?

2. How to find 𝒌∗ and assign data to cluster 

                              without revealing which cluster?

3. How to obliviously update the cluster?
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▪ Squared Euclidian distance dist([𝑑], [𝑐]) = σ𝑖=1
ℓ 𝑑𝑖 − 𝑐𝑖

2, where:

▪ d,c is ℓ dimensional vector 

▪ Each party holds arithmetic share 𝑑𝑖 = 𝑑𝑖
𝐴 + 𝑑𝑖

𝐵,  𝑐𝑖 = 𝑐𝑖
𝐴 + 𝑐𝑖

𝐵

▪ dist([𝑑], [𝑐]) = σ𝑖=1
ℓ 𝑑𝑖

𝐴 + 𝑑𝑖
𝐵 − 𝑐𝑖

𝐴 − 𝑐𝑖
𝐵 2

 

                       = σ𝑖=1
ℓ (𝑑𝑖

𝐴−𝑐𝑖
𝐴) + (𝑑𝑖

𝐵−𝑐𝑖
𝐵)

2

 = σ𝑖=1
ℓ 𝑑𝑖

𝐴 − 𝑐𝑖
𝐴 2

+ σ𝑖=1
ℓ 𝑑𝑖

𝐵 − 𝑐𝑖
𝐵 2

+2σ𝑖=1
ℓ (𝑑𝑖

𝐴 − 𝑐𝑖
𝐴) (𝑑𝑖

𝐵 − 𝑐𝑖
𝐵)

▪ Alice locally computes σ𝑖=1
ℓ 𝑑𝑖

𝐴 − 𝑐𝑖
𝐴 2

▪ Bob locally computes σ𝑖=1
ℓ 𝑑𝑖

𝐵 − 𝑐𝑖
𝐵 2

▪ Parties jointly compute inner product   σ𝑖=1
ℓ (𝒅𝒊

𝑨 − 𝒄𝒊
𝑨) (𝒅𝒊

𝑩 − 𝒄𝒊
𝑩)

SECURE EUCLIDIAN DISTANCE
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dist([𝑑], [𝑐]) 
= 𝑑1 − 𝑐1

2 + 𝑑2 − 𝑐2
2 

𝑑

𝑐



▪ Parties jointly compute inner product   σ𝑖=1
ℓ (𝒅𝒊

𝑨 − 𝒄𝒊
𝑨) (𝒅𝒊

𝑩 − 𝒄𝒊
𝑩)

▪ Previous work: using generic inner product

▪ Our observation: 

▪ Need to compute inner products between 1 point d vs many clusters c

▪ Point 𝑑𝑖 is fix during all iterations

▪ #cluster << #datapoint

▪ We rewrite

 (𝒅𝒊
𝑨 − 𝒄𝒊

𝑨)(𝒅𝒊
𝑩 − 𝒄𝒊

𝑩)= 𝒅𝒊
𝑨 (𝒅𝒊

𝑩−𝒄𝒊
𝑩) − 𝒅𝒊

𝑩 𝒄𝒊
𝑨 + 𝒄𝒊

𝑩 𝒄𝒊
𝑨

▪ Applying inner product based on Oblivious Transfer (OT)

▪ Reuse OT for 𝒅𝒊
𝑨 when computing 𝒅𝒊

𝑨 (𝒅𝒊
𝑩−𝒄𝒊

𝑩)

▪ Reuse OT for 𝒅𝒊
𝑩 when computing 𝒅𝒊

𝑩 𝒄𝒊
𝑨

=> 32-148x faster than prior work

SECURE EUCLIDIAN DISTANCE
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dist([𝑑], [𝑐]) 
= 𝑑1 − 𝑐1

2 + 𝑑2 − 𝑐2
2 

𝑑



ASSIGN DATA TO CLUSTER
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▪ Input: shared Euclidian distances between a point and m clusters[𝒆𝒌]

▪ Goal:

▪ Find closest cluster [𝒌∗] = argmin
𝒌∈[𝒎]

[𝒆𝒌]

▪ Assign the point [𝑑] to the closest cluster [𝑐𝑘∗]

▪ Most of prior works reveal 𝒌∗  

▪ Ours: hide 𝒌∗

▪ Presenting 𝒌∗ as a binary vector 
Garbled Circuit

0

0

1

0

0

0

0

1

1

0

1

1

0

1

0

0

1

1

𝑑

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]

𝒌∗

argmin([𝒆𝒌])

𝟏 1

2

.

.

.

m



ASSIGN DATA TO CLUSTER
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▪ Input: shared Euclidian distances between a point and m clusters[𝒆𝒌]

▪ Goal:

▪ Find shortest distance [𝒌∗] = argmin
𝒌∈[𝒎]

[𝒆𝒌]

▪ Assign the point [𝑑] to the closest cluster [𝑐𝑘∗]

▪ Most of prior works reveal 𝒌∗  

▪ Ours: hide 𝒌∗

▪ Present ing 𝒌∗ as a binary vector Customized 

Garbled Circuit

0

0

1

0

0

0

0

1

1

0

1

1

0

1

0

0

1

1

[𝒆𝒌]: arithmetic shares

Garble circuit: Yao shares

 convert arithmetic shares to Yao’s

 Not cheap!

 We design a better circuit (see paper)

argmin([𝒆𝒌])

𝒌∗



UPDATE CLUSTER
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▪ Recalculate the new cluster center by 𝒄𝒌 = 𝒂𝒗𝒈 𝒅𝒊 , 𝒅𝒊 ∈ 𝑪𝒌

𝑐′1 = 𝑎𝑣𝑔 𝑑𝑖 , 𝑑𝑖 ∈ 𝐶𝑘



UPDATE CLUSTER
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▪ Recalculate the new cluster center by 𝒄𝒌 = 𝒂𝒗𝒈 𝒅𝒊 , 𝒅𝒊 ∈ 𝑪𝒌

▪ From previous step, we have a bit vector indicated whether 𝒅𝒊 ∈ 𝑪𝒌

▪ Average 𝒂𝒗𝒈 𝒅𝒊  can be computed as:

cluster 𝒌

0

0

1

0

0

0

𝒅𝟏

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

𝒅𝟐 𝒅𝒏

𝑴𝒌

𝒅𝟑

where 𝑴𝒌 and 𝒅𝒊 are secretly shared among two parties

…

𝒄𝒌=
σ𝒊=𝟏

𝒏 𝑴𝒌[𝒊] ∗ 𝒅𝒊

σ𝒊=𝟏
𝒏 𝑴𝒌[𝒊]

=
σ𝒊=𝟏

𝒏 (𝑴𝒌
𝑨[𝒊] ⊕ 𝑴𝒌

𝑩[𝒊]) ∗ (𝒅𝒊
𝑨 + 𝒅𝒊

𝑩)

σ𝒊=𝟏
𝒏 (𝑴𝒌

𝑨[𝒊] ⊕ 𝑴𝒌
𝑩[𝒊])



UPDATE CLUSTER
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▪ Recalculate the new cluster center by 𝒄𝒌 = 𝒂𝒗𝒈 𝒅𝒊 , 𝒅𝒊 ∈ 𝑪𝒌

▪ From previous step, we have a bit vector indicated whether 𝒅𝒊 ∈ 𝑪𝒌

▪ Average 𝒂𝒗𝒈 𝒅𝒊  can be computed as:

cluster 𝒌

0

0

1

0

0

0

𝒅𝟏

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

𝒅𝟐 𝒅𝒏
𝒄𝒌=

σ𝒊=𝟏
𝒏 𝑴𝒌[𝒊] ∗ 𝒅𝒊

σ𝒊=𝟏
𝒏 𝑴𝒌[𝒊]

=
σ𝒊=𝟏

𝒏 (𝑴𝒌
𝑨[𝒊] ⊕ 𝑴𝒌

𝑩[𝒊]) ∗ (𝒅𝒊
𝑨 + 𝒅𝒊

𝑩)

σ𝒊=𝟏
𝒏 (𝑴𝒌

𝑨[𝒊] ⊕ 𝑴𝒌
𝑩[𝒊])

• Direct Solution:

• Convert Boolean share to arithmetic share

• Secure multiplication

• Better Solution based Oblivious Transfer (see paper)

𝑴𝒌

𝒅𝟑

where 𝑴𝒌 and 𝒅𝒊 are secretly shared among two parties

…



dist([𝑑𝑖], [𝑐𝑘]) 
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING 

▪ Inputs: 

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]} 

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]}

▪ Until clustering converges (or other 
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance 
between 𝒅𝒊 and 𝒄𝒌 as 
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

          [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the 
closest cluster center 𝒌∗

▪ For each cluster 𝒄𝒌:

▪ Compute the average of the 
points assigned to the cluster as

𝒄𝒌
′ = 𝒂𝒗𝒈 [𝒅𝒊] , 𝒅𝒊 ∈ 𝑪𝒌

▪ Update 𝒄𝒌 =  𝒄𝒌
′

Questions:

1. How to securely compute Euclidian distance?

2. How to find 𝒌∗ and assign data to cluster 

                              without revealing which cluster?

3. How to obliviously update the cluster?
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PERFORMANCE: DISTANCE MEASURES

▪ Our amortized Secure Euclidean Squared Distance (SESD) 
cost is 8.9 × − 38.5× faster than the cost of computing a 
Manhattan distance, and 10.5 × − 40.5× faster than that of 
Chessboard distance.

Running time in millisecond per a distance metric with d 

dimension. Data size is n = 2^12 , K, T is the number of clusters, 

and number of iterations, respectively.

Euclidean                   Manhattan                    Chessboard

▪ Manhattan metric and Chessboard 
metric are considered as alternative 
distance metrics in some ML 
applications.
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Running time (in minute) of our privacy-preserving 

clustering protocol, where dataset size is 10,000 

points, dimension is d ∈ {2, 4, 6, 8, 10}, the number of 

cluster and iterations are 9 and 15, respectively

PERFORMANCE

Experiments with Different Dimensions

Running time in minute and communication cost of our privacy-preserving clustering 

protocol, where n, K is the size of database and the number of clusters, respectively, T is 

number of iterations, dimension d = 2, and bit-length  = 3

Experiments with Generated Dataset

Comparison of accuracy for privacy-preserving, plain-text, and ground truth model. 

Our privacy-preserving model achieves the same accuracy as the plain-text model, 

which reaches 95% accuracy compared to the expected ideal clusters

Accuracy
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THANK YOU

▪ Paper: https://eprint.iacr.org/2019/1158.pdf

▪ Code: https://github.com/osu-crypto/secure-kmean-clustering
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