PRACTICAL PRIVACY-PRESERVING K-MEANS CLUSTERING

Recording: https://www.youtube.com/watch?v=g7292mN-yAI

Payman Mohassel (Facebook) Mike Rosulek (Oregon State University) **Ni Trieu** (UC Berkeley)

WY DO PRIVAT DRESERVING CLUSTERING?

- What is clustering?
	- The process of grouping a set of objects into classes of similar objects

WHY DO PRIVACY PRESERVING CLUSTERING?

- What is clustering?
	- The process of grouping a set of objects into classes of similar objects
- Why is privacy preserving clustering important?
	- Data comes from different sources: transaction, genome
	- **Privacy concern**

Bank of America

- Our scheme:
	- More efficient than previous work
	- Scale to large datasets

CLUSTERING ALGORITHMS

• K-mean clustering $O(nmt)$, where dataset size n, number clusters m, number iterations t

This work

 $m \ll n$ and $t \ll n$

- **K-mean clustering is faster than hierarchical clustering**
- K-mean clustering is widely used in many applications

- **Privacy-preserving K-mean Clustering has received less attention than** other supervised ML problems
- Previous work […,XHYCZ17, JA18]
	- Not provide a full privacy guarantee (e.g. reveal the intermediate cluster centers)
	- **Example 2 and/or heavy on public key operations**
	- \Rightarrow inefficient when the dataset is large.
- Our work:
	- **Eull privacy quarantee**
	- **Based on symmetric key operations**
		- **Efficient secure Euclidean distance**
		- Customized minimum circuit on shared values
		- K-means clustering
	- \Rightarrow 5 orders of magnitude faster than prior work

- Inputs:
	- **•** Secret shared dataset as $\{[d_1], ..., [d_n]\}$
	- #clusters m
- Algorithm:
	- **•** Pick m random clusters $\{[c_1], ..., [c_m]\}$
	- Until clustering *converges* (or other stopping criterion):
		- For each data point d_i :
			- **•** For each cluster c_k :
				- Compute the distance between d_i and c_k as $[e_{ik}] = dist([d_i], [c_k])$

- Inputs:
	- **•** Secret shared dataset as $\{[d_1], ..., [d_n]\}$
	- #clusters m
- Algorithm:
	- **•** Pick m random clusters $\{[c_1], ..., [c_m]\}$
	- Until clustering *converges* (or other stopping criterion):
		- For each data point d_i :
			- **•** For each cluster c_k :
				- Compute the distance between d_i and c_k as $[e_{ik}] = dist([d_i], [c_k])$
			- Find closest cluster center

 $[k^*] = argmin[e_{ik}]$ $k \in [m]$

- Inputs:
	- **•** Secret share dataset as $\{[d_1], ..., [d_n]\}$
	- #clusters m
- Algorithm:
	- **•** Pick m random clusters $\{[c_1], ..., [c_m]\}$
	- Until clustering *converges* (or other stopping criterion):
		- For each data point d_i :
			- **•** For each cluster c_k :
				- Compute the distance between d_i and c_k as $[e_{ik}] = dist([d_i], [c_k])$
			- Find closest cluster center

 $[k^*] = argmin[e_{ik}]$ $k \in [m]$

- Assign the data point \boldsymbol{d}_i to the closest cluster center k^*

- Inputs:
	- **•** Secret share dataset as $\{[d_1], ..., [d_n]\}$
	- #clusters m
- Algorithm:
	- **•** Pick m random clusters $\{[c_1], ..., [c_m]\}$
	- Until clustering *converges* (or other stopping criterion):
		- For each data point d_i :
			- **•** For each cluster c_k :
				- Compute the distance between d_i and c_k as $[e_{ik}] = dist([d_i], [c_k])$
			- Find closest cluster center

 $[k^*] = argmin[e_{ik}]$ $k \in [m]$

- Assign the data point \boldsymbol{d}_i to the closest cluster center k^*

- Inputs:
	- **•** Secret share dataset as $\{[d_1], ..., [d_n]\}$
	- #clusters m
- Algorithm:
	- **•** Pick m random clusters $\{[c_1], ..., [c_m]\}$
	- Until clustering *converges* (or other stopping criterion):
		- For each data point d_i :
			- **•** For each cluster c_k :
				- Compute the distance between d_i and c_k as $[e_{ik}] = dist([d_i], [c_k])$
			- Find closest cluster center

 $[k^*] = argmin[e_{ik}]$ $k \in [m]$

- Assign the data point \boldsymbol{d}_i to the closest cluster center k^*
- **•** For each cluster c_k :
	- Compute the average of the points assigned to the cluster as

 c'_{k}] = $avg([d_{i}]), d_{i} \in C_{k}$

- Inputs:
	- **•** Secret share dataset as $\{[d_1], ..., [d_n]\}$
	- #clusters m
- Algorithm:
	- **•** Pick m random clusters $\{[c_1], ..., [c_m]\}$
	- Until clustering *converges* (or other stopping criterion):
		- For each data point d_i :
			- **•** For each cluster c_k :
				- Compute the distance between d_i and c_k as $[e_{ik}] = dist([d_i], [c_k])$
			- Find closest cluster center

 $[k^*] = argmin[e_{ik}]$ $k \in [m]$

- Assign the data point \boldsymbol{d}_i to the closest cluster center k^*
- **•** For each cluster c_k :
	- Compute the average of the points assigned to the cluster as

 c'_{k}] = $avg([d_{i}]), d_{i} \in C_{k}$

• Update $c_k = c'_k$

- Inputs:
	- **•** Secret share dataset as $\{[d_1], ..., [d_n]\}$
	- #clusters m
- Algorithm:
	- **•** Pick m random clusters $\{[c_1], ..., [c_m]\}$
	- Until clustering *converges* (or other stopping criterion):
		- For each data point d_i :
			- **•** For each cluster c_k :
				- Compute the distance between d_i and c_k as $[e_{ik}] = dist([d_i], [c_k])$
			- Find closest cluster center

 $[k^*] = argmin[e_{ik}]$ $k \in [m]$

- Assign the data point \boldsymbol{d}_i to the closest cluster center k^*
- **•** For each cluster c_k :
	- Compute the average of the points assigned to the cluster as

 c'_{k}] = $avg([d_{i}]), d_{i} \in C_{k}$

• Update $c_k = c'_k$

▪ Inputs:

- **•** Secret share dataset as $\{[d_1], ..., [d_n]\}$
- \blacksquare #clusters m
- Algorithm:

၃

၃

- **•** Pick m random clusters $\{[c_1], ..., [c_m]\}$
- Until clustering *converges* (or other stopping criterion):
	- For each data point d_i :
		- **•** For each cluster c_k :
			- Compute the distance between d_i and c_k as $[e_{ik}] = dist([d_i], [c_k])$
		- **Find closest cluster center**
		- $[k^*] = argmin[e_{ik}]$ $k \in [m]$
		- Assign the data point \boldsymbol{d}_i to the closest cluster center k^*
	- **•** For each cluster c_k :
		- Compute the average of the points assigned to the cluster as

 c'_{k}] = $avg([d_{i}]), d_{i} \in C_{k}$

• Update $c_k = c'_k$

Questions:

e.
" 1. How to securely compute Euclidian distance? 2. How to find \bm{k}^* and assign data to cluster

without revealing which cluster?

3. How to obliviously update the cluster?

 \mathbf{r}_3

SECURE EUCLIDIAN DISTANCE

- Squared Euclidian distance dist([d], [c]) $= \sum_{i=1}^{\ell} (d_i c_i)^2$, where:
	- \bullet d,c is ℓ dimensional vector
	- **•** Each party holds arithmetic share $d_i = d_i^A + d_i^B$, $c_i = c_i^A + c_i^B$

• dist([d],[c]) =
$$
\sum_{i=1}^{l} (d_i^A + d_i^B - c_i^A - c_i^B)^2
$$

\n= $\sum_{i=1}^{l} ((d_i^A - c_i^A) + (d_i^B - c_i^B))^2$
\n= $\sum_{i=1}^{l} (d_i^A - c_i^A)^2 + \sum_{i=1}^{l} (d_i^B - c_i^B)^2 + 2\sum_{i=1}^{l} (d_i^A - c_i^A) (d_i^B - c_i^B)$

- Alice locally computes $\sum_{i=1}^{\ell} \bigl(d_i^A c_i^A\bigr)^2$
- $\textbf{\textsf{--} \, Bob locally computes} \, {\textstyle\sum_{i=1}^{\ell}} \bigl(d_i^{B} c_i^{B}\bigr)^2$
- Parties jointly compute inner product $\sum_{i=1}^{\ell} (d_i^A c_i^A)$ $(d_i^B c_i^B)$

SECURE EUCLIDIAN DISTANCE

- Parties jointly compute inner product $\sum_{i=1}^{\ell} (d_i^A c_i^A)$ $(d_i^B c_i^B)$
	- **Previous work: using generic inner product**
	- Our observation:
		- Need to compute inner products between 1 point d vs many clusters c
		- \bullet Point d_i is fix during all iterations
		- #cluster << #datapoint
	- **We rewrite**

 $(d_i^A - c_i^A)(d_i^B - c_i^B) = d_i^A(d_i^B - c_i^B) - d_i^B c_i^A + c_i^B c_i^A$

- Applying inner product based on Oblivious Transfer (OT)
	- Reuse OT for d_i^A when computing d_i^A $(d_i^B−c_i^B)$
	- Reuse OT for d^B_i when computing d^B_i c^A_i
- \Rightarrow 32-148x faster than prior work

ASSIGN DATA TO CLUSTER

∗]

- **•** Input: shared Euclidian distances between a point and m clusters[e_k]
- Goal:
	- Find closest cluster $[k^*] = \text{argmin}[e_k]$ $k \in [m]$
	- **Example 1** Assign the point $[d]$ to the closest cluster $[c]_k$
- Most of prior works reveal k^*
- \blacksquare Ours: hide k^*
	- **Presenting** k^* **as a binary vector**

ASSIGN DATA TO CLUSTER

∗]

- **•** Input: shared Euclidian distances between a point and m clusters[e_k]
- Goal:
	- Find shortest distance $[k^*] = \text{argmin}[e_k]$ $k \in [m]$
	- **Example 1** Assign the point $[d]$ to the closest cluster $[c]$.
- Most of prior works reveal k^*
- \blacksquare Ours: hide k^*
	- Present ing k^* as a binary vector Customized

- $[e_k]$: arithmetic shares
- Garble circuit: Yao shares
- \Rightarrow convert arithmetic shares to Yao's
- \Rightarrow Not cheap!
- \Rightarrow We design a better circuit (see paper)

UPDATE CLUSTER

 \bullet Recalculate the new cluster center by $\boldsymbol{c}_k = \boldsymbol{avg}(\boldsymbol{d}_i)$, $\boldsymbol{d}_i \in \boldsymbol{\mathcal{C}}_k$

UPDATE CLUSTER

- \bullet Recalculate the new cluster center by $\boldsymbol{c}_k = \boldsymbol{avg}(\boldsymbol{d}_i)$, $\boldsymbol{d}_i \in \boldsymbol{\mathcal{C}}_k$
- **From previous step, we have a bit vector indicated whether** $d_i \in C_k$
- Average $avg(d_i)$ can be computed as:

$$
c_k = \frac{\sum_{i=1}^n M_k[i] * d_i}{\sum_{i=1}^n M_k[i]}
$$

where M_k and d_i are secretly shared among two parties

UPDATE CLUSTER

- \bullet Recalculate the new cluster center by $\boldsymbol{c}_k = \boldsymbol{avg}(\boldsymbol{d}_i)$, $\boldsymbol{d}_i \in \boldsymbol{\mathcal{C}}_k$
- **From previous step, we have a bit vector indicated whether** $d_i \in C_k$
- Average $avg(d_i)$ can be computed as:

$$
c_k = \frac{\sum_{i=1}^n M_k[i] * d_i}{\sum_{i=1}^n M_k[i]} = \frac{\sum_{i=1}^n (M_k^A[i] \oplus M_k^B[i]) * (d_i^A + d_i^B)}{\sum_{i=1}^n (M_k^A[i] \oplus M_k^B[i])}
$$

where M_k and d_i are secretly shared among two parties

- Direct Solution:
	- Convert Boolean share to arithmetic share
	- Secure multiplication
- Better Solution based Oblivious Transfer (see paper)

▪ Inputs:

- **•** Secret share dataset as $\{[d_1], ..., [d_n]\}$
- \blacksquare #clusters m
- Algorithm:

၃

- **•** Pick m random clusters $\{[c_1], ..., [c_m]\}$
- Until clustering *converges* (or other stopping criterion):
	- For each data point d_i :
		- **•** For each cluster c_k :
			- Compute the distance between d_i and c_k as $[e_{ik}] = dist([d_i], [c_k])$
		- Find closest cluster center
		- $[k^*] = argmin[e_{ik}]$ $k \in [m]$
		- Assign the data point \boldsymbol{d}_i to the closest cluster center k^*
	- **•** For each cluster c_k :
		- Compute the average of the points assigned to the cluster as

 c'_{k}] = $avg([d_{i}]), d_{i} \in C_{k}$

• Update $c_k = c'_k$

Questions:

e.
. 1. How to securely compute Euclidian distance? 2. How to find $\boldsymbol{k^*}$ and assign data to cluster without revealing which cluster?

How to obliviously update the cluster?

PERFORMANCE: DISTANCE MEASURES

• Manhattan metric and Chessboard metric are considered as alternative distance metrics in some ML applications.

▪ Our **amortized** Secure Euclidean Squared Distance (SESD) cost is $8.9 \times -38.5 \times$ faster than the cost of computing a Manhattan distance, and 10.5 \times - 40.5 \times faster than that of Chessboard distance.

Running time in millisecond per a distance metric with d dimension. Data size is $n = 2^1/2$, K, T is the number of clusters, and number of iterations, respectively.

PERFORMANCE

Experiments with Generated Dataset

Running time in minute and communication cost of our privacy-preserving clustering protocol, where n, K is the size of database and the number of clusters, respectively, T is number of iterations, dimension $d = 2$, and bit-length = 3

(a) Ground Truth Model [2]

(b) Plaintext and Privacy-Preserving K-means Model.

24

Comparison of accuracy for privacy-preserving, plain-text, and ground truth model. Our privacy-preserving model achieves the same accuracy as the plain-text model, which reaches 95% accuracy compared to the expected ideal clusters

Experiments with Different Dimensions

Running time (in minute) of our privacy-preserving clustering protocol, where dataset size is 10,000 points, dimension is $d \in \{2, 4, 6, 8, 10\}$, the number of cluster and iterations are 9 and 15, respectively

THANK YOU

- [Paper: https://eprint.iacr.org/2019/1158.pdf](https://eprint.iacr.org/2019/776)
- [Code:](https://github.com/osu-crypto/PSU) <https://github.com/osu-crypto/secure-kmean-clustering>