PRACTICAL PRIVACY-PRESERVING
K-MEANS CLUSTERING

Recording: https://www.youtube.com/watch?v=g7292mN-yAl

Payman Mohassel (Facebook)
Mike Rosulek (Oregon State University)
Ni Trieu (UC Berkeley)

= What is clustering?
= The process of grouping a set of objects into classes of similar objects

®
.

CLUSTERING?

suNy
]
anw
.......

WHY DO PRIVACY PRESERVING CLUSTERING?

= What is clustering?
= The process of grouping a set of objects into classes of similar objects

= Why is privacy preserving clustering important?

= Data comes from different sources: transaction, genome ® ‘ @
= Privacy concern VIS A EBbank BankofAmerlcas
A T, - /

PS4
*

THIS WORK: TWO-SERVER MODEL
S

server

Our scheme:
More efficient than previous work

Scale to large datasets

(-

CLUSTERING ALGORITHMS

= K-mean clustering 0 (nmt), where dataset size n, number clusters m, number iterations t
D

RD Y ¥ m«nandt«n
DR @ O
029 D 4*‘1--\...\...\...® &
This work S - . ®
1S WOT @ g @m.*.

= Hierarchical clustering 0(n? logn)
= |

3 clusters
,”/
,’/’
p
P

[10 080

= K-mean clustering is faster than hierarchical clustering

= K-mean clustering is widely used in many applications

(-

PRIVACY-PRESERVING K-MEAN CLUSTERING

= Privacy-preserving K-mean Clustering has received less attention than
other supervised ML problems

= Previous work [...,.XHYCZ17,]JAl8]

= Not provide a full privacy guarantee (e.qg.reveal the intermediate
cluster centers)

= and/or heavy on public key operations
— inefficient when the dataset is large.

= Our work:
= Full privacy guarantee

= Based on symmetric key operations
= Efficient secure Euclidean distance
= Customized minimum circuit on shared values
= K-means clustering

— 5 orders of magnitude faster than prior work

o

PRIVACY-PRESERVING K-MEANS CLUSTERING

= Inputs:
= Secret shared dataset as {[d], ..., [d,]}

= #clusters m

= Algorithm:
= Pick m random clusters {[c,], ..., [c;n]}

= Until clustering converges (or other
stopping criterion):

= For each data point d;:
= For each cluster cy:

= Compute the distance
between d; and ¢y, as

leu] =dist([d;], [ck])

dist([d;], [ck])

1\
RN
1
\
W
| __ =g
ve

PRIVACY-PRESERVING K-MEANS CLUSTERING aiddd-tad

= Inputs: ' ydy
= Secret shared dataset as {[d], ..., [d,]} "")v:

A 4

= #clusters m

= Algorithm:
= Pick m random clusters {[c,], ..., [c;n]}

= Until clustering converges (or other
stopping criterion):

= For each data point d;:
= For each cluster cy:

= Compute the distance
between d; and ¢y, as

[ei] =dist([d;], [ck])
» Find closest cluster center

[k*] = argmin|e;;]
ke[m]

»

PRIVACY-PRESERVING K-MEANS CLUSTERING ¥ dndddfad

argmin[ey] ®

ke[m] A
= Inputs: |
= Secret share dataset as {[d4], ..., [d,]}

= #clusters m

A 4

A 4

= Algorithm:
= Pick m random clusters {[c,], ..., [c;n]}

= Until clustering converges (or other
stopping criterion):

. A
= For each data point d;: @ C
] vae 3
= For each cluster cy: ® >
= Compute the distance

between d; and ¢, as @@ ® @
[eri] =dist([d], [c]) X
= Find closest cluster center ® v 4C1 ®
@ Rl ®

[k*] = argmin|e;;]
ke[m]
= Assign the data point d; to the
closest cluster center k*

PRIVACY-PRESERVING K-MEANS CLUSTERING

= Inputs:
= Secret share dataset as {[d4], ..., [d,]}

= #clusters m

= Algorithm:
= Pick m random clusters {[c,], ..., [c;n]}

= Until clustering converges (or other
stopping criterion):

= For each data point d;:
= For each cluster cy:

= Compute the distance
between d; and ¢y, as

[eir] =dist([d;], [ck])
» Find closest cluster center
[k*] = argmin|e;;]

ke[m]
= Assign the data point d; to the
closest cluster center k*

>

&
|
T

argmin|e;]

A 4

A 4

= Secret share dataset as {[d4], ..., [d,]}
= #clusters m

= Algorithm:

PRIVACY-PRESERVING K-MEANS CLUSTERING

wh

v
>
ryA

argmin|e;]

ke[m]
= Pick m random clusters {[c{], ..., [c;n]}

= Until clustering converges (or other
stopping criterion):

= For each data point d;:

= For each cluster cy:

¥
B ;

= Compute the distance
between d; and ¢y, as

[ei] =dist([d;], [ck])

» Find closest cluster center

v
v

A 4

~
~.
~ ~
~
~ ~.
~
~, ~

[k'] = argmin]e;]
k

!/
S22 VAV C 1
€[m]
= Assign the data point d; to the

closest cluster center k*
= For each cluster ¢y:

= Compute the average of the

points assigned to the cluster as

&
S
[ck] = avg([d;]). d; € Cy

>

PRIVACY-PRESERVING K-MEANS CLUSTERING ¥ dndddfad

= Inputs:
= Secret share dataset as {[d4], ..., [d,]}

= #clusters m

= Algorithm:
= Pick m random clusters {[c,], ..., [c;n]}
= Until clustering converges (or other
stopping criterion):
= For each data point d;:
= For each cluster cy:

= Compute the distance
between d; and ¢y, as

[eir] =dist([d;], [ck])
» Find closest cluster center

[k'] = argmin]e;]
ke[m]

= Assign the data point d; to the
closest cluster center k*

= For each cluster ¢y:

= Compute the average of the
points assigned to the cluster as

[ek] = avg([d;]), d; € Cy,
= Update ¢, = ¢,

argmin|e;] &

ke[m] =

A 4

A 4

PRIVACY-PRESERVING K-MEANS CLUSTERING

= Inputs:
= Secret share dataset as {[d4], ..., [d,]}

= #clusters m

= Algorithm:
= Pick m random clusters {[c,], ..., [c;n]}

= Until clustering converges (or other
|| stopping criterion):

= For each data point d;:
= For each cluster cy:

= Compute the distance
between d; and ¢y, as

[eir] =dist([d;], [ck])
» Find closest cluster center

[k*] = argmin|e;;]
ke[m]

= Assign the data point d; to the
closest cluster center k*

= For each cluster ¢y:

= Compute the average of the
points assigned to the cluster as

[ek] = avg([d;]), d; € Cy,
= Update ¢, = ¢,

>

ke[m]

argmin|e;]

&
|
T

v

v

PRIVACY-PRESERVING K-MEANS CLUSTERING

= Inputs:
= Secret share dataset as {[d4], ..., [d,]}

= #clusters m

= Algorithm:
= Pick m random clusters {[c,], ..., [c;n]}

= Until clustering converges (or other
stopping criterion):

= For each data point d;:
= For each cluster cy:

between d; and ¢y, as
leir] =dist([d;], [ck])
= Find closest cluster center

? (k'] = argmin[ey]

ke[m]

? = Compute the distance

= Assign the data point d; to the
closest cluster center k*

= For each cluster ¢y:

= Compute the average of the
? points assigned to the cluster as

[ck] = avg([di]), d; € Cy,
= Update ¢, = ¢,

1. How to
2. How to find

3. How to

>

>
FYA

v
argmin|e;]
ke[m]

A 4

compute

and

data to cluster

A 4

&

SECURE EUCLIDIAN DISTANCE

dist([d], [c])
= (dy — ¢1)* +(dy — ¢)?

&

» Squared Euclidian distance dist([d], [c]) =X¢.,(d; — ¢;)?, where:

= d,c is £ dimensional vector
= Each party holds arithmetic share d; = df + d?, ¢;=¢/* + ¢/
: _ ! A B A B2
= dist([d], [c]) = i=1(di +di —¢f —¢)
2
= Zi (@ =cH + (@P =)

2 2
=Y (df —cf) + 2o (df — f) +axii (dff — ¢ @f —cf)

= Alice locally computes Zle(d{‘ - ClA)2

= Bob locally computes Zf;l(df —cf)2

= Parties jointly compute inner product Zf=1(d‘i‘l i c‘i‘l) (d? — cf)

1)

~ SECURE EUCLIDIAN DISTANCE 2

= Parties jointly compute inner product Zf=1(d‘{' = c‘,-") (d? — C?)

dist([d], [C]g , Previous work: using generic inner product
= (dy —c1)* +(dy — ¢c3) ,
= Our observation:

= Need to compute inner products between 1 point d vs many clusters c
= Point d; is fix during all iterations
= #cluster << #datapoint

= We rewrite
(@f — (P — cPy= df (dP—cP)— dP cf +cF cf
= Applying inner product based on Oblivious Transfer (OT)
= Reuse OT for d when computing d (d? —c?)

= Reuse OT for d¥ when computing d? ¢

=> 32-148x faster than prior work

©

ASSIGN DATA TO CLUSTER

= Input: shared Euclidian distances between a point and m clusters|e,|

= Goal: 1

= Find closest cluster k™| = argmin|[ey|
ke[m]

= Assign the point [d] to the closest cluster

Y &
>
M

argmin|e;x]
ke[m]

[

= Most of prior works reveal k”

= Ours: hide k*
= Presenting k" as a binary vector

v

1o |1 0
argmin([e,])| | 0 | 2 1
B RN NN
—
0o |- 0 0
0 1 1

ASSIGN DATA TO CLUSTER

= Input: shared Euclidian distances between a point and m clusters|e,|

= Goal:

= Find shortest distance [k*| = argmin|e]

= Assign the point [d] to the closest cluster

= Most of prior works reveal k*
= Ours: hide k*

= Present ing k" as a binary vector

0 0

argmin([ey]) 0

B N

le]: arithmetic shares
Garble circuit: Yao shares

— convert arithmetic shares to Yao’s

— Not cheap!

Customized
Garbled Circuit

g, B 4 7 1) 2) (8
CEF I Ty

O TN [l“‘lf-mwsﬂlh

1 —
[100].,
= OF

4
[o010].,

T 0] s !
[0000100] .,

— We design a better circuit (see paper)

UPDATE CLUSTER

= Recalculate the new cluster center by ¢, = avg(d;),d; € C;,

©

UPDATE CLUSTER (B

= Recalculate the new cluster center by ¢, = avg(d;),d; € C;, R
D

= From previous step, we have a bit vector indicated whether d; € Cy, Y

= Average avg(d;) can be computed as:

dy d, d; dy, Z?ﬂ M, [i] = d;

T My i)

cluster k where M, and d; are secretly shared among two parties

©

UPDATE CLUSTER K N——
e |
= Recalculate the new cluster center by ¢, = avg(d;),d; € C;, & ®®*
SY
= From previous step, we have a bit vector indicated whether d; € Cy, & &
= Average avg(d;) can be computed as:
di d; d3 dy 1= Yi=1 My [i] = d; _ T (M [i] © ME[i]) = (df +df)
Y B Ml i (M2 (] © ME[i])

cluster k where M, and d; are secretly sha among two parties

* Direct Solution:
 Convert Boolean share to arithmetic share
e Secure multiplication
» Better Solution based Oblivious Transfer (see paper)

e

>

PRIVACY-PRESERVING K-MEANS CLUSTERING ¥ dndddfad

v
argmin|e;] &

ke[m] =

= Inputs: J.’»
FyA
= Secret share dataset as {[d4], ..., [d,]}

= #clusters m

A 4

A 4

= Algorithm:
= Pick m random clusters {[c,], ..., [c;n]}

= Until clustering converges (or other
stopping criterion):

= For each data point d;:
= For each cluster cy:

between d; and ¢y, as
leir] =dist([d;], [ck])
= Find closest cluster center

? [k*] = argmin|e;;]

ke[m]

? = Compute the distance

= Assign the data point d; to the
closest cluster center k*

= For each cluster ¢y:

= Compute the average of the
? points assigned to the cluster as

[ck] = avg([di]), d; € Cy,
= Update ¢, = ¢,

PERFORMANCE: DISTANCE MEASURES

= Manhattan metric and Chessboard

metric are considered as alternative
distance metrics in some ML
applications.

Euclidean Manhattan Chessboard
= /(i-n) 2 + (j-m) 2 = i-n| + [j-m| = max[[i-n], [j-m]]
Distance Dimension d
Metric 2 | 3 | 4 | 10
Manhattan 1.163 | 1.623 | 1.96 [4.763
. : : “hesshos 222 | 1.711 | 2.294 | 5.7¢
= Our amortized Secure Euclidean Squared Distance (SESD) ¢ '{1}{]:mjrfllﬁ —10] 11] ;;f; . {l] ;éf} - .31}*41 - 4;;
cost is 8.9 X — 38.5% faster than the cost of computing a {HzJ‘:Tzz[]} 5079 0133 | 0164 0398
Manhattan dis.tance, and 10.5 X — 40.5X% faster than that of SESD [K =16,T = 10} || 0.036 | 0.043 | 0.066 | 0.172
Chessboard distance. K =16,T = 20} || 0.031 [0.042 [0.063 | 0.163

Running time in millisecond per a distance metric with d
dimension. Data size is n = 2712 , K, T is the number of clusters,

and number of iterations, respectively. @

PERFORMANCE

Parameters BunTime (minute)

Experiments with Generated Dataset

Communication (MB)

. Distance | Assign Points | Update Distance | Assign Points Update
" kT (SESD) to Clusters Centroids Total (SESD) to Clusters Centroids Tital
9 10 10.65 1.14 0.13 1.92 200 2330 11) 2540
. 10 20 (1.5 2.29 0.26 3.5 308 4660 20 4878
Expenments with Different Dimensions . |10 0.73 4.61 0.47 5.81 496 8760 40 9296
o Y20 1.14 09.23 0.04 11.35 LT 17520 & 18589
e Distance (3680} s |10 5.69 11.12 1.2 15.02 1932 21400 140 23472
B Assign Points to Clusters 10°] EL 2325 2.4 30.04 FOsL A2R00 2RI 4T06S
B Update Centroids - 10 5.7 47.18 5.13 55.00 4969 #5630 340 90939
201 T 11.13 094.35 10.27 115.75 9027 171260 Litel LE186T

Running time in minute and communication cost of our privacy-preserving clustering

151 protocol, where n, K is the size of database and the number of clusters, respectively, T is
number of iterations, dimension d = 2, and bit-length =3
10
ZH000 . 25000 4
5] Accuracy
20000 20000
0- 15000 - . . ’ » .
2 4 B 8 10 ™ s 3 >
- * - -4 . g
b Eh"' e | - Sy
A .

Running time (minute)

15000
Dimension

10000 10000

Running time (in minute) of our privacy-preserving
clustering protocol, where dataset size is 10,000

3000 5000
points, dimension is d € {2, 4, 6, 8, 10}, the number of
C].llSteI and iteratiOIIS are 9 and 15, l’eSpeCtivelY 5000 10000 15000 20000 25000 S300 10000 15000 20000 25000
(a) Ground Truth Model [2] (b} Plaintext and Privacy-Preserving K-means Model.
Comparison of accuracy for privacy-preserving, plain-text, and ground truth model.
Our privacy-preserving model achieves the same accuracy as the plain-text model, @
which reaches 95% accuracy compared to the expected ideal clusters

THANK YOU

= Paper: https://eprint.iacr.org/2019/1158.pdf

= Code: https://github.com/osu-crypto/secure-kmean-clustering

https://eprint.iacr.org/2019/776
https://eprint.iacr.org/2019/1158.pdf
https://github.com/osu-crypto/PSU
https://github.com/osu-crypto/secure-kmean-clustering

	Slide 1: Practical Privacy-Preserving K-means Clustering
	Slide 2: Why do Privacy Preserving clustering?
	Slide 3: Why do Privacy Preserving clustering?
	Slide 4: This work: Two-server Model
	Slide 5: Clustering Algorithms
	Slide 6: privacy-preserving K-mean Clustering
	Slide 7: Privacy-Preserving K-means clustering
	Slide 8: Privacy-Preserving K-means clustering
	Slide 9: Privacy-Preserving K-means clustering
	Slide 10: Privacy-Preserving K-means clustering
	Slide 11: Privacy-Preserving K-means clustering
	Slide 12: Privacy-Preserving K-means clustering
	Slide 13: Privacy-Preserving K-means clustering
	Slide 14: Privacy-Preserving K-means clustering
	Slide 15: Secure Euclidian Distance
	Slide 16: Secure Euclidian Distance
	Slide 17: assign data to cluster
	Slide 18: assign data to cluster
	Slide 19: update Cluster
	Slide 20: update Cluster
	Slide 21: update Cluster
	Slide 22: Privacy-Preserving K-means clustering
	Slide 23
	Slide 24
	Slide 25: Thank you

