
PRACTICAL PRIVACY-PRESERVING
K-MEANS CLUSTERING

1
Payman Mohassel (Facebook)

Mike Rosulek (Oregon State University)

Ni Trieu (UC Berkeley)

1

Recording: https://www.youtube.com/watch?v=g7292mN-yAI

WHY DO PRIVACY PRESERVING CLUSTERING?
▪ What is clustering?

▪ The process of grouping a set of objects into classes of similar objects

2

WHY DO PRIVACY PRESERVING CLUSTERING?
▪ What is clustering?

▪ The process of grouping a set of objects into classes of similar objects

▪ Why is privacy preserving clustering important?

▪ Data comes from different sources: transaction, genome

▪ Privacy concern

3

THIS WORK: TWO-SERVER MODEL

• Our scheme:

• More efficient than previous work

• Scale to large datasets

server server

two party computation

model

= +

Trans. records

4

▪ K-mean clustering 𝑂(𝑛𝑚𝑡), where dataset size n, number clusters m, number iterations t

▪ Hierarchical clustering 𝑂(𝑛2 log 𝑛)

▪ K-mean clustering is faster than hierarchical clustering

▪ K-mean clustering is widely used in many applications

CLUSTERING ALGORITHMS

5

𝑚 ≪ 𝑛 and t ≪ 𝑛

This work

▪ Privacy-preserving K-mean Clustering has received less attention than
other supervised ML problems

▪ Previous work […,XHYCZ17, JA18]

▪ Not provide a full privacy guarantee (e.g. reveal the intermediate
cluster centers)

▪ and/or heavy on public key operations

 inefficient when the dataset is large.

▪ Our work:

▪ Full privacy guarantee

▪ Based on symmetric key operations

▪ Efficient secure Euclidean distance

▪ Customized minimum circuit on shared values

▪ K-means clustering

 5 orders of magnitude faster than prior work

PRIVACY-PRESERVING K-MEAN CLUSTERING

6

dist([𝑑𝑖], [𝑐𝑘])

𝑐1

𝑐2

𝑐3

PRIVACY-PRESERVING K-MEANS CLUSTERING
▪ Inputs:

▪ Secret shared dataset as {[𝑑1], … , [𝑑𝑛]}

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]}

▪ Until clustering converges (or other
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance
between 𝒅𝒊 and 𝒄𝒌 as
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

7

dist([𝑑𝑖], [𝑐𝑘])

𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]

PRIVACY-PRESERVING K-MEANS CLUSTERING
▪ Inputs:

▪ Secret shared dataset as {[𝑑1], … , [𝑑𝑛]}

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]}

▪ Until clustering converges (or other
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance
between 𝒅𝒊 and 𝒄𝒌 as
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

 [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

8

dist([𝑑𝑖], [𝑐𝑘])
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING

▪ Inputs:

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]}

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]}

▪ Until clustering converges (or other
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance
between 𝒅𝒊 and 𝒄𝒌 as
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

 [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the
closest cluster center 𝒌∗

9

dist([𝑑𝑖], [𝑐𝑘])
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING

▪ Inputs:

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]}

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]}

▪ Until clustering converges (or other
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance
between 𝒅𝒊 and 𝒄𝒌 as
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

 [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the
closest cluster center 𝒌∗

10

dist([𝑑𝑖], [𝑐𝑘])
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING

▪ Inputs:

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]}

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]}

▪ Until clustering converges (or other
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance
between 𝒅𝒊 and 𝒄𝒌 as
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

 [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the
closest cluster center 𝒌∗

▪ For each cluster 𝒄𝒌:

▪ Compute the average of the
points assigned to the cluster as

𝒄𝒌
′ = 𝒂𝒗𝒈 [𝒅𝒊] , 𝒅𝒊 ∈ 𝑪𝒌

𝑐′1

11

dist([𝑑𝑖], [𝑐𝑘])
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING

▪ Inputs:

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]}

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]}

▪ Until clustering converges (or other
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance
between 𝒅𝒊 and 𝒄𝒌 as
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

 [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the
closest cluster center 𝒌∗

▪ For each cluster 𝒄𝒌:

▪ Compute the average of the
points assigned to the cluster as

𝒄𝒌
′ = 𝒂𝒗𝒈 [𝒅𝒊] , 𝒅𝒊 ∈ 𝑪𝒌

▪ Update 𝒄𝒌 = 𝒄𝒌
′ 12

dist([𝑑𝑖], [𝑐𝑘])
𝑑

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING

▪ Inputs:

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]}

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]}

▪ Until clustering converges (or other
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance
between 𝒅𝒊 and 𝒄𝒌 as
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

 [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the
closest cluster center 𝒌∗

▪ For each cluster 𝒄𝒌:

▪ Compute the average of the
points assigned to the cluster as

𝒄𝒌
′ = 𝒂𝒗𝒈 [𝒅𝒊] , 𝒅𝒊 ∈ 𝑪𝒌

▪ Update 𝒄𝒌 = 𝒄𝒌
′ 13

dist([𝑑𝑖], [𝑐𝑘])
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING

▪ Inputs:

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]}

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]}

▪ Until clustering converges (or other
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance
between 𝒅𝒊 and 𝒄𝒌 as
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

 [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the
closest cluster center 𝒌∗

▪ For each cluster 𝒄𝒌:

▪ Compute the average of the
points assigned to the cluster as

𝒄𝒌
′ = 𝒂𝒗𝒈 [𝒅𝒊] , 𝒅𝒊 ∈ 𝑪𝒌

▪ Update 𝒄𝒌 = 𝒄𝒌
′

Questions:

1. How to securely compute Euclidian distance?

2. How to find 𝒌∗ and assign data to cluster

 without revealing which cluster?

3. How to obliviously update the cluster?

14

▪ Squared Euclidian distance dist([𝑑], [𝑐]) = σ𝑖=1
ℓ 𝑑𝑖 − 𝑐𝑖

2, where:

▪ d,c is ℓ dimensional vector

▪ Each party holds arithmetic share 𝑑𝑖 = 𝑑𝑖
𝐴 + 𝑑𝑖

𝐵, 𝑐𝑖 = 𝑐𝑖
𝐴 + 𝑐𝑖

𝐵

▪ dist([𝑑], [𝑐]) = σ𝑖=1
ℓ 𝑑𝑖

𝐴 + 𝑑𝑖
𝐵 − 𝑐𝑖

𝐴 − 𝑐𝑖
𝐵 2

 = σ𝑖=1
ℓ (𝑑𝑖

𝐴−𝑐𝑖
𝐴) + (𝑑𝑖

𝐵−𝑐𝑖
𝐵)

2

 = σ𝑖=1
ℓ 𝑑𝑖

𝐴 − 𝑐𝑖
𝐴 2

+ σ𝑖=1
ℓ 𝑑𝑖

𝐵 − 𝑐𝑖
𝐵 2

+2σ𝑖=1
ℓ (𝑑𝑖

𝐴 − 𝑐𝑖
𝐴) (𝑑𝑖

𝐵 − 𝑐𝑖
𝐵)

▪ Alice locally computes σ𝑖=1
ℓ 𝑑𝑖

𝐴 − 𝑐𝑖
𝐴 2

▪ Bob locally computes σ𝑖=1
ℓ 𝑑𝑖

𝐵 − 𝑐𝑖
𝐵 2

▪ Parties jointly compute inner product σ𝑖=1
ℓ (𝒅𝒊

𝑨 − 𝒄𝒊
𝑨) (𝒅𝒊

𝑩 − 𝒄𝒊
𝑩)

SECURE EUCLIDIAN DISTANCE

15

dist([𝑑], [𝑐])
= 𝑑1 − 𝑐1

2 + 𝑑2 − 𝑐2
2

𝑑

𝑐

▪ Parties jointly compute inner product σ𝑖=1
ℓ (𝒅𝒊

𝑨 − 𝒄𝒊
𝑨) (𝒅𝒊

𝑩 − 𝒄𝒊
𝑩)

▪ Previous work: using generic inner product

▪ Our observation:

▪ Need to compute inner products between 1 point d vs many clusters c

▪ Point 𝑑𝑖 is fix during all iterations

▪ #cluster << #datapoint

▪ We rewrite

 (𝒅𝒊
𝑨 − 𝒄𝒊

𝑨)(𝒅𝒊
𝑩 − 𝒄𝒊

𝑩)= 𝒅𝒊
𝑨 (𝒅𝒊

𝑩−𝒄𝒊
𝑩) − 𝒅𝒊

𝑩 𝒄𝒊
𝑨 + 𝒄𝒊

𝑩 𝒄𝒊
𝑨

▪ Applying inner product based on Oblivious Transfer (OT)

▪ Reuse OT for 𝒅𝒊
𝑨 when computing 𝒅𝒊

𝑨 (𝒅𝒊
𝑩−𝒄𝒊

𝑩)

▪ Reuse OT for 𝒅𝒊
𝑩 when computing 𝒅𝒊

𝑩 𝒄𝒊
𝑨

=> 32-148x faster than prior work

SECURE EUCLIDIAN DISTANCE

16

dist([𝑑], [𝑐])
= 𝑑1 − 𝑐1

2 + 𝑑2 − 𝑐2
2

𝑑

ASSIGN DATA TO CLUSTER

17

▪ Input: shared Euclidian distances between a point and m clusters[𝒆𝒌]

▪ Goal:

▪ Find closest cluster [𝒌∗] = argmin
𝒌∈[𝒎]

[𝒆𝒌]

▪ Assign the point [𝑑] to the closest cluster [𝑐𝑘∗]

▪ Most of prior works reveal 𝒌∗

▪ Ours: hide 𝒌∗

▪ Presenting 𝒌∗ as a binary vector
Garbled Circuit

0

0

1

0

0

0

0

1

1

0

1

1

0

1

0

0

1

1

𝑑

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]

𝒌∗

argmin([𝒆𝒌])

𝟏 1

2

.

.

.

m

ASSIGN DATA TO CLUSTER

18

▪ Input: shared Euclidian distances between a point and m clusters[𝒆𝒌]

▪ Goal:

▪ Find shortest distance [𝒌∗] = argmin
𝒌∈[𝒎]

[𝒆𝒌]

▪ Assign the point [𝑑] to the closest cluster [𝑐𝑘∗]

▪ Most of prior works reveal 𝒌∗

▪ Ours: hide 𝒌∗

▪ Present ing 𝒌∗ as a binary vector Customized

Garbled Circuit

0

0

1

0

0

0

0

1

1

0

1

1

0

1

0

0

1

1

[𝒆𝒌]: arithmetic shares

Garble circuit: Yao shares

 convert arithmetic shares to Yao’s

 Not cheap!

 We design a better circuit (see paper)

argmin([𝒆𝒌])

𝒌∗

UPDATE CLUSTER

19

▪ Recalculate the new cluster center by 𝒄𝒌 = 𝒂𝒗𝒈 𝒅𝒊 , 𝒅𝒊 ∈ 𝑪𝒌

𝑐′1 = 𝑎𝑣𝑔 𝑑𝑖 , 𝑑𝑖 ∈ 𝐶𝑘

UPDATE CLUSTER

20

▪ Recalculate the new cluster center by 𝒄𝒌 = 𝒂𝒗𝒈 𝒅𝒊 , 𝒅𝒊 ∈ 𝑪𝒌

▪ From previous step, we have a bit vector indicated whether 𝒅𝒊 ∈ 𝑪𝒌

▪ Average 𝒂𝒗𝒈 𝒅𝒊 can be computed as:

cluster 𝒌

0

0

1

0

0

0

𝒅𝟏

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

𝒅𝟐 𝒅𝒏

𝑴𝒌

𝒅𝟑

where 𝑴𝒌 and 𝒅𝒊 are secretly shared among two parties

…

𝒄𝒌=
σ𝒊=𝟏

𝒏 𝑴𝒌[𝒊] ∗ 𝒅𝒊

σ𝒊=𝟏
𝒏 𝑴𝒌[𝒊]

=
σ𝒊=𝟏

𝒏 (𝑴𝒌
𝑨[𝒊] ⊕ 𝑴𝒌

𝑩[𝒊]) ∗ (𝒅𝒊
𝑨 + 𝒅𝒊

𝑩)

σ𝒊=𝟏
𝒏 (𝑴𝒌

𝑨[𝒊] ⊕ 𝑴𝒌
𝑩[𝒊])

UPDATE CLUSTER

21

▪ Recalculate the new cluster center by 𝒄𝒌 = 𝒂𝒗𝒈 𝒅𝒊 , 𝒅𝒊 ∈ 𝑪𝒌

▪ From previous step, we have a bit vector indicated whether 𝒅𝒊 ∈ 𝑪𝒌

▪ Average 𝒂𝒗𝒈 𝒅𝒊 can be computed as:

cluster 𝒌

0

0

1

0

0

0

𝒅𝟏

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

𝒅𝟐 𝒅𝒏
𝒄𝒌=

σ𝒊=𝟏
𝒏 𝑴𝒌[𝒊] ∗ 𝒅𝒊

σ𝒊=𝟏
𝒏 𝑴𝒌[𝒊]

=
σ𝒊=𝟏

𝒏 (𝑴𝒌
𝑨[𝒊] ⊕ 𝑴𝒌

𝑩[𝒊]) ∗ (𝒅𝒊
𝑨 + 𝒅𝒊

𝑩)

σ𝒊=𝟏
𝒏 (𝑴𝒌

𝑨[𝒊] ⊕ 𝑴𝒌
𝑩[𝒊])

• Direct Solution:

• Convert Boolean share to arithmetic share

• Secure multiplication

• Better Solution based Oblivious Transfer (see paper)

𝑴𝒌

𝒅𝟑

where 𝑴𝒌 and 𝒅𝒊 are secretly shared among two parties

…

dist([𝑑𝑖], [𝑐𝑘])
𝑑

𝑐1

𝑐2

𝑐3

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘∈[𝑚]

[𝑒𝑖𝑘]
PRIVACY-PRESERVING K-MEANS CLUSTERING

▪ Inputs:

▪ Secret share dataset as {[𝑑1], … , [𝑑𝑛]}

▪ #clusters m

▪ Algorithm:

▪ Pick m random clusters {[𝑐1], … , [𝑐𝑚]}

▪ Until clustering converges (or other
stopping criterion):

▪ For each data point 𝒅𝒊:

▪ For each cluster 𝒄𝒌:

▪ Compute the distance
between 𝒅𝒊 and 𝒄𝒌 as
[𝑒𝑖𝑘] =dist([𝑑𝑖], [𝑐𝑘])

▪ Find closest cluster center

 [𝒌∗] = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒌∈[𝒎]

[𝒆𝒊𝒌]

▪ Assign the data point 𝒅𝒊 to the
closest cluster center 𝒌∗

▪ For each cluster 𝒄𝒌:

▪ Compute the average of the
points assigned to the cluster as

𝒄𝒌
′ = 𝒂𝒗𝒈 [𝒅𝒊] , 𝒅𝒊 ∈ 𝑪𝒌

▪ Update 𝒄𝒌 = 𝒄𝒌
′

Questions:

1. How to securely compute Euclidian distance?

2. How to find 𝒌∗ and assign data to cluster

 without revealing which cluster?

3. How to obliviously update the cluster?

22

PERFORMANCE: DISTANCE MEASURES

▪ Our amortized Secure Euclidean Squared Distance (SESD)
cost is 8.9 × − 38.5× faster than the cost of computing a
Manhattan distance, and 10.5 × − 40.5× faster than that of
Chessboard distance.

Running time in millisecond per a distance metric with d

dimension. Data size is n = 2^12 , K, T is the number of clusters,

and number of iterations, respectively.

Euclidean Manhattan Chessboard

▪ Manhattan metric and Chessboard
metric are considered as alternative
distance metrics in some ML
applications.

23

Running time (in minute) of our privacy-preserving

clustering protocol, where dataset size is 10,000

points, dimension is d ∈ {2, 4, 6, 8, 10}, the number of

cluster and iterations are 9 and 15, respectively

PERFORMANCE

Experiments with Different Dimensions

Running time in minute and communication cost of our privacy-preserving clustering

protocol, where n, K is the size of database and the number of clusters, respectively, T is

number of iterations, dimension d = 2, and bit-length = 3

Experiments with Generated Dataset

Comparison of accuracy for privacy-preserving, plain-text, and ground truth model.

Our privacy-preserving model achieves the same accuracy as the plain-text model,

which reaches 95% accuracy compared to the expected ideal clusters

Accuracy

24

THANK YOU

▪ Paper: https://eprint.iacr.org/2019/1158.pdf

▪ Code: https://github.com/osu-crypto/secure-kmean-clustering

25

https://eprint.iacr.org/2019/776
https://eprint.iacr.org/2019/1158.pdf
https://github.com/osu-crypto/PSU
https://github.com/osu-crypto/secure-kmean-clustering

	Slide 1: Practical Privacy-Preserving K-means Clustering
	Slide 2: Why do Privacy Preserving clustering?
	Slide 3: Why do Privacy Preserving clustering?
	Slide 4: This work: Two-server Model
	Slide 5: Clustering Algorithms
	Slide 6: privacy-preserving K-mean Clustering
	Slide 7: Privacy-Preserving K-means clustering
	Slide 8: Privacy-Preserving K-means clustering
	Slide 9: Privacy-Preserving K-means clustering
	Slide 10: Privacy-Preserving K-means clustering
	Slide 11: Privacy-Preserving K-means clustering
	Slide 12: Privacy-Preserving K-means clustering
	Slide 13: Privacy-Preserving K-means clustering
	Slide 14: Privacy-Preserving K-means clustering
	Slide 15: Secure Euclidian Distance
	Slide 16: Secure Euclidian Distance
	Slide 17: assign data to cluster
	Slide 18: assign data to cluster
	Slide 19: update Cluster
	Slide 20: update Cluster
	Slide 21: update Cluster
	Slide 22: Privacy-Preserving K-means clustering
	Slide 23
	Slide 24
	Slide 25: Thank you

