CSE 539: Applied Cryptography Week 13: Oblivious Transfer

Ni Trieu (ASU)

Reading:

- https://web.engr.oregonstate.edu/~rosulekm/cryptabit/1-overview.pdf
- https://securecomputation.org/docs/ch1-introduction.pdf
- https://securecomputation.org/docs/ch2-definingmpc.pdf

Recap: Secure Computation

- Secure computation is a magic box
 - Yao's Protocol (Garbled Circuit)

Recap: Yao's Protocol

x > y?

- Input domain: $x, y \in \{1,2\}$
 - Alice's input: x = 1
 - Bob's input: y = 2
- Strawman solution:
 - Alice does the following:
 - Write truth table of function f(x, y) = x > y?
 - For each possible input, choose random cryptographic key
 - Encrypt each output with corresponding keys
 - Randomly permute ciphertexts, send to Bob

Somehow Bob obtains only "correct" encrypted keys: A_x , B_y

- Bob learns only f(x, y)
- [Informal security]:
 - Alice learns nothing
 - Bob learns A_x , but not x. Bob can only decrypt $Enc_{A_x,B_y}(f(x,y))$

x	у	f(x,y)
A_1	B_1	$Enc_{A_1,B_1}(f(1,1))$
A_2	B_3	$Enc_{A_2,B_3}(f(2,3))$
A_1	B_3	$Enc_{A_1,B_3}(f(1,3))$
A_2	B_1	$Enc_{A_2,B_1}(f(2,1))$
A_2	B_2	$Enc_{A_2,B_2}(f(2,2))$
A_1	B_2	$Enc_{A_1,B_2}(f(1,2))$
A_3	B_1	$Enc_{A_3,B_1}(f(3,1))$
A_3	B_2	$Enc_{A_3,B_2}(f(3,2))$
A_3	B_3	$Enc_{A_3,B_3}(f(3,3))$

Oblivious Transfer Functionality

Oblivious Transfer (OT) refers to the setting where a sender with two input strings (m_0, m_1) interacts with a receiver who has an input choice bit b. As the result, the receiver learns mb without learning anything about m_{1-b} , while the sender learns nothing about b.

Oblivious Transfer Construction

Oblivious Transfer: Security

OBLIVIOUS TRANSFER EXTENSION

[Beaver'96, Ishai-Kilian-Nissim-Petrank'03]

- OT (using PK) is expensive
- Few OTs+ symmetric keys => many OTs [Ishai-Kilian-Nissim-Petrank'03]
 - But still need to communicate $O(\kappa)$ bits per random OT, where κ is security parameter

Oblivious Transfer Construction (reading)

- https://www.iacr.org/archive/crypto2003/27290145/27290145.pdf
- https://eprint.iacr.org/2013/552.pdf
- https://eprint.iacr.org/2015/061.pdf
- https://eprint.iacr.org/2013/491.pdf
- https://eprint.iacr.org/2019/634.pdf