# CSE 539: Applied Cryptography Week 12: Multi-party Computation

Ni Trieu (ASU)

#### Reading:

- <a href="https://web.engr.oregonstate.edu/~rosulekm/cryptabit/1-overview.pdf">https://web.engr.oregonstate.edu/~rosulekm/cryptabit/1-overview.pdf</a>
- https://www.youtube.com/watch?v=FTxh908u9y8
- https://securecomputation.org/docs/ch1-introduction.pdf
- <a href="https://securecomputation.org/docs/ch2-definingmpc.pdf">https://securecomputation.org/docs/ch2-definingmpc.pdf</a>

## What is Secure Computation?

Secure computation is a magic box

- Example:
  - Yao's Millionaires' Problem
  - Private Matching
  - Secure Voting
  - Privacy-Preserving Machine Learning

How to determine who is richer while keeping their actual wealth private?



## Private Matching

How to do DNA testing without revealing the input data?



# Secure Voting/Auction

How to vote without revealing your vote?





## Privacy-Preserving Machine Learning

 How to train a ML model while maintaining the privacy of each database (from different sources)



## How to do Secure Computation?

- Multi-party Computation (Garbled Circuit or Secret Sharing)
  - Present the computation function f as a circuit
  - Evaluate the circuit via garbling, encoding, decoding "Obviously"



## How to do Secure Computation?

- Multi-party Computation (Garbled Circuit or Secret Sharing)
  - Present the computation function f as a circuit
  - Evaluate the circuit via garbling, encoding, decoding "Obviously"



- Homomorphic Encryption
  - Perform computations on its encrypted data without first decrypting it.



#### Outline

- What is Secure Computation?
- How does it work?
  - Yao's Protocol (Garbled Circuit)
  - Homomorphic Encryption (Next Lecture)



- Input domain:  $x, y \in \{1,2\}$ 
  - Alice's input: x = 2
  - Bob's input: y = 3

x > y?

x > y?

- Input domain:  $x, y \in \{1,2,3\}$ 
  - Alice's input: x = 2
  - Bob's input: y = 3
- Strawman solution:
  - Alice does the following :
    - Write truth table of function f(x, y) = x > y?
    - For each possible input, choose random cryptographic key
    - Encrypt each output with corresponding keys
    - Randomly permute ciphertexts, send to Bob

| x | у | f(x,y) |
|---|---|--------|
|   |   |        |
|   |   |        |
|   |   |        |
|   |   |        |
|   |   |        |
|   |   |        |
|   |   |        |
|   |   |        |
|   |   |        |

x > y?

- Input domain:  $x, y \in \{1,2\}$ 
  - Alice's input: x = 2
  - Bob's input: y = 3
- Strawman solution:
  - Alice does the following :
    - Write truth table of function f(x, y) = x > y?
    - For each possible input, choose random cryptographic key
    - Encrypt each output with corresponding keys
    - Randomly permute ciphertexts, send to Bob

Somehow Bob obtains only "correct" encrypted keys:  $A_x$ ,  $B_y$ 



| x     | у     | f(x,y)                  |
|-------|-------|-------------------------|
| $A_1$ | $B_1$ | $Enc_{A_1,B_1}(f(1,1))$ |
| $A_2$ | $B_3$ | $Enc_{A_2,B_3}(f(2,3))$ |
| $A_1$ | $B_3$ | $Enc_{A_1,B_3}(f(1,3))$ |
| $A_2$ | $B_1$ | $Enc_{A_2,B_1}(f(2,1))$ |
| $A_2$ | $B_2$ | $Enc_{A_2,B_2}(f(2,2))$ |
| $A_1$ | $B_2$ | $Enc_{A_1,B_2}(f(1,2))$ |
| $A_3$ | $B_1$ | $Enc_{A_3,B_1}(f(3,1))$ |
| $A_3$ | $B_2$ | $Enc_{A_3,B_2}(f(3,2))$ |
| $A_3$ | $B_3$ | $Enc_{A_3,B_3}(f(3,3))$ |

x > y?

- Input domain:  $x, y \in \{1,2\}$ 
  - Alice's input: x = 2
  - Bob's input: y = 3
- Strawman solution:
  - Alice does the following:
    - Write truth table of function f(x, y) = x > y?
    - For each possible input, choose random cryptographic key
    - Encrypt each output with corresponding keys
    - Randomly permute ciphertexts, send to Bob

Somehow Bob obtains only "correct" encrypted keys:  $A_x$ ,  $B_y$ 

Bob learns only f(x, y)



| x     | у     | f(x,y)                  |
|-------|-------|-------------------------|
| $A_1$ | $B_1$ | $Enc_{A_1,B_1}(f(1,1))$ |
| $A_2$ | $B_3$ | $Enc_{A_2,B_3}(f(2,3))$ |
| $A_1$ | $B_3$ | $Enc_{A_1,B_3}(f(1,3))$ |
| $A_2$ | $B_1$ | $Enc_{A_2,B_1}(f(2,1))$ |
| $A_2$ | $B_2$ | $Enc_{A_2,B_2}(f(2,2))$ |
| $A_1$ | $B_2$ | $Enc_{A_1,B_2}(f(1,2))$ |
| $A_3$ | $B_1$ | $Enc_{A_3,B_1}(f(3,1))$ |
| $A_3$ | $B_2$ | $Enc_{A_3,B_2}(f(3,2))$ |
| $A_3$ | $B_3$ | $Enc_{A_3,B_3}(f(3,3))$ |

x > y?

• Input domain:  $x, y \in \{1,2\}$ 

Somehow Bob obtains only "correct" encrypted keys:  $A_x$ ,  $B_y$ 

- Alice's input: x = 1
- Bob's input: y = 2
- Strawman solution
- Problem:
  - How does Bob learn  $A_x$ ,  $B_y$ ?
    - Using Oblivious Transfer (discuss later)
  - And, cost scales with the truth table size of f
    - Idea: instead of encrypting outputs, we encrypt each gate of circuit f



| x     | у     | f(x,y)                          |
|-------|-------|---------------------------------|
| $A_1$ | $B_1$ | $Enc_{A_1,B_1}(f(1,1))$         |
| $A_2$ | $B_3$ | $Enc_{A_2,B_3}(f(2,3))$         |
| $A_1$ | $B_3$ | $\boxed{Enc_{A_1,B_3}(f(1,3))}$ |
| $A_2$ | $B_1$ | $Enc_{A_2,B_1}(f(2,1))$         |
| $A_2$ | $B_2$ | $Enc_{A_2,B_2}(f(2,2))$         |
| $A_1$ | $B_2$ | $Enc_{A_1,B_2}(f(1,2))$         |
| $A_3$ | $B_1$ | $Enc_{A_3,B_1}(f(3,1))$         |
| $A_3$ | $B_2$ | $Enc_{A_3,B_2}(f(3,2))$         |
| $A_3$ | $B_3$ | $Enc_{A_3,B_3}(f(3,3))$         |

- Instead of encrypting outputs f, we encrypt each gate of the circuit f
- For example,  $f(x_1, x_2, y_1, y_2) = (x_1 + y_1)x_2y_2$ 
  - Where Alice's input is  $x_1, x_2$  and Bob's input is  $y_1, y_2$



Instead of encrypting outputs f, we encrypt each gate of the circuit f



 $\chi_1$ 

 $y_1$ 

| $x_2$ | $y_2$ | X |
|-------|-------|---|
| 0     | 0     | 0 |
| 0     | 1     | 0 |
| 1     | 0     | 0 |
| 1     | 1     | 1 |

- Construction:
  - (Alice) Garbling a circuit:
    - Pick random labels on each wire



- Construction:
  - (Alice) Garbling a circuit:
    - Pick random labels on each wire
    - "Encrypt" truth table of each gate



- Construction:
  - (Alice) Garbling a circuit:
    - Pick random labels on each wire
    - "Encrypt" truth table of each gate



Garbled circuit ≡ all encrypted gates

Garbled encoding ≡ one label per wire

#### Construction:

- (Alice) Garbling a circuit:
  - Pick random labels on each wire
  - "Encrypt" truth table of each gate
  - Send the garbled circuit to Bob



• Construction:

Somehow Bob obtains only "correct" encrypted keys

 $Enc_{F_0,E_0}(I_0)$ 

 $Enc_{F_0,E_1}(I_0)$ 

- (Alice) Garbling a circuit:
  - Pick random labels on each wire
  - "Encrypt" truth table of each gate
  - Send the garbled circuit to Bob
- (Bob) Garbled evaluation:
  - Only one ciphertext per gate is decryptable
  - Result of decryption is value on outgoing wire

 $Enc_{A_0,B_0}(F_0)$ 

 $Enc_{A_0,B_1}(F_1)$ 

 $Enc_{A_1,B_0}(F_1)$ 

 $Enc_{A_1,B_1}(F_0)$ 



Construction:

Somehow Bob obtains only "correct" encrypted keys

- (Alice) Garbling a circuit:
  - Pick random labels on each wire
  - "Encrypt" truth table of each gate
  - Send the garbled circuit to Bob
- (Bob) Garbled evaluation:
  - Only one ciphertext per gate is decryptable
  - Result of decryption is value on outgoing wire



## Sample quiz:

• What is MPC?

#### Sample quiz:

• What is the purpose of "garbling" in Garbled Circuit?