CSE 539: Applied Cryptography Week 8: Diffie-Hellman Key Agreement

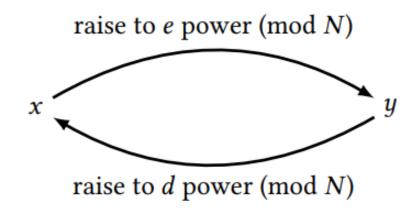
Ni Trieu (ASU)

Reading: https://joyofcryptography.com/pdf/chap14.pdf https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman key exchange

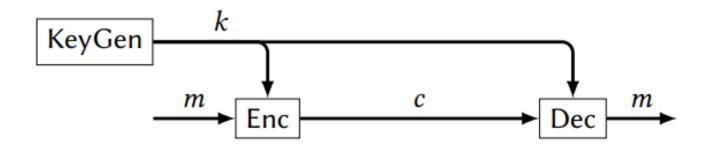
Recap: RSA

The RSA function is defined as follows:

- ▶ Let p and q be distinct primes (later we will say more about how they are chosen), and let N = pq. N is called the **RSA modulus**.
- ▶ Let *e* and *d* be integers such that $ed \equiv_{\phi(N)} 1$. That is, *e* and *d* are multiplicative inverses mod $\phi(N)$ not mod N!
- ▶ The RSA function is: $x \mapsto x^e \% N$, where $x \in \mathbb{Z}_N$.
- ▶ The inverse RSA function is: $y \mapsto y^d \% N$, where $x \in \mathbb{Z}_N$.

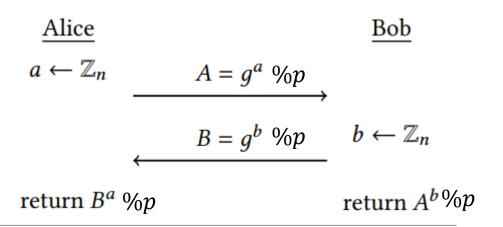


Recall: Encryption Basics & Terminology



• How to setup k?

- Introduced in 1976
- First practical method for establishing a shared secret over an unsecured channel



• Quiz Sample: In the execution of Diffie-Hellman key agreement, Alice and Bob use the prime p=23 and the primitive root g=11. Alice chooses the secret key a=6. Similarly, Bob chooses the secret key b=15. What is the Alice & Bob's shared key?

Cyclic Groups

Definition 14.1 Let $g \in \mathbb{Z}_n^*$. Define $\langle g \rangle_n = \{g^i \% n \mid i \in \mathbb{Z}\}$, the set of all powers of g reduced mod g. Then g is called a **generator** of $g \rangle_n$, and $g \rangle_n$ is called the **cyclic group generated by** g **mod** g. If $g \rangle_n = \mathbb{Z}_n^*$, then we say that g is a **primitive root mod** g.

Cyclic Groups

- ▶ Any cyclic group is closed under multiplication. That is, take any $X, Y \in \mathbb{G}$; then it must be possible to write $X = g^x$ and $Y = g^y$ for some integers x, y. Using the multiplication operation of \mathbb{G} , the product is $XY = g^{x+y}$, which is also in \mathbb{G} .
- Any cyclic group is closed under inverses. Take any $X \in \mathbb{G}$; then it must be possible to write $X = g^x$ for some integer x. We can then see that $g^{-x} \in \mathbb{G}$ by definition, and $g^{-x}X = g^{-x+x} = g^0$ is the identity element. So X has a multiplicative inverse (g^{-x}) in \mathbb{G} .

Definition 14.2 The **discrete logarithm problem** is: given $X \in \langle g \rangle$, determine a number x such that $g^x = X$. (Discrete Log) Here the exponentiation is with respect to the multiplication operation in $\mathbb{G} = \langle g \rangle$.

• Quiz Sample:

Consider the following key-exchange protocol where p, g, q are public parameters

- (i) Alice chooses a random exponent $a_1 \leftarrow \mathbb{Z}_q$ and computes $h_1 = g^{a_1} \mod p$. Alice sends h_1 to Bob
- (ii) Bob chooses two random exponents a_2, a_3 , and computes $h_2 = g^{a_2+a_3} \mod p$. Bob sends h_2 to Alice.
- (iii) Alice outputs a shared key $k = h_2^{a_1} \mod p$

Show how Bob outputs the same key k?