CSE 539 Applied Cryptography Fall 2024

Ni Trieu (ASU)

Week-1

- Greetings
- Syllabus
- What Cryptography is
- What "Applied" Cryptography is
- Why cryptography is good for the world?

Greetings

```
CSE 539: Applied Cryptography
```

Fall 2024 (Internet - Hybrid; M 9:00 - 10:15 SCOB228)

- Instructor: Ni Trieu (nitrieu@asu.edu)
- TA: Jiahui Gao (jgao76@asu.edu)

Office hours: 15:00-16:00 Wednesday at Bio-design Building B or via https://asu.zoom.us/my/TBA

- Grader: Raj Subash Mendon (rmendon1@asu.edu)
- Grader: Hartik Suhagiya (hmsuhagi@asu.edu)

Greetings

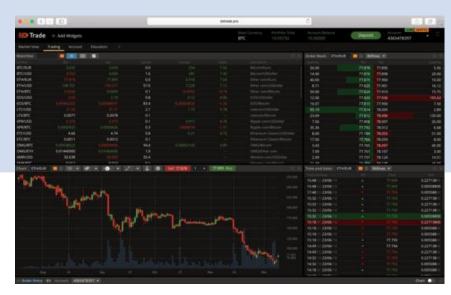
- "Hybrid course" => means
 - Its delivery is via a combination of in-person meetings and online assignments.
 - All course materials including lectures and assignments, will be predominantly delivered in an online setting. I will be posting new materials every Wednesday.

Textbook

- The Joy of Cryptography; Mike Rosulek; https://joyofcryptography.com/
- Introduction to Modern Cryptography (2nd edition); Jonathan Katz and Yehuda Lindell; http://www.cs.umd.edu/~jkatz/imc.html
- Handbook of Applied Cryptograph; Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone; https://cacr.uwaterloo.ca/hac/
- A Pragmatic Introduction to Secure Multi-Party Computation; David Evans, Vladimir Kolesnikov, Mike Rosulek; https://securecomputation.org/

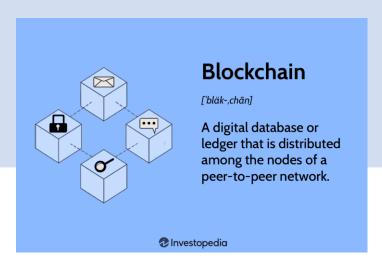
- Basics of cryptog	
	raphy

Won't cover	Will cover
- Software security	- Basics of cryptography


Won't cover	Will cover
- Software security	 Basics of cryptography Implementation of crypto primitives

Won't cover	Will cover
 Software security Implementation of how to hack an app 	 Basics of cryptography Implementation of crypto primitives

Won't cover	Will cover
 Software security Implementation of how to hack an app 	 Basics of cryptography Implementation of crypto primitives Applied crypto such as how cryptocurrency/blockchain works Blockchain
	['bläk-,chān] A digital database or ledger that is distributed among the nodes of a peer-to-peer network. Investopedia


Won't cover

- Software security
- Implementation of how to hack an app
- Other topics such as how to trade bitcoin ©

Will cover

- Basics of cryptography
- Implementation of crypto primitives
- Applied crypto such as how cryptocurrency/blockchain works

Syllabus: Tentative Course Itinerary

- 1. Introduction (2 lectures):
 - Overview of modern crypto and topics to be discussed in the class
 - Overview of applied crypto and its implementations in real-world scenarios.
- 2. Basics of cryptography(10 lectures):
 - Secret sharing scheme
 - Provable Security/Security definition
 - Pseudorandom Generators/Functions
 - Block Ciphers
 - Message Authentication Codes
 - Hash Functions
 - RSA/Digital Signatures
 - Diffie-Hellman Key Agreement
 - Public-Key Encryption
- 3. Advanced/applied cryptography (10 lectures):
 - Multi-party secure computation (2)
 - Homomorphic encryption (2)
 - Zero-knowledge proof/blockchain (2)
 - Privacy-preserving machine learning (2 lectures)
 - Private database query (1 lecture)
 - Other practical problems (1 lecture)
- 4. Final project presentations (8 lectures)

Grading

- 1. **Homework** (45%): Expect 3 online quizzes with a mixture of math, computation, security proofs, attacks, and problem-solving.
- 2. Take-home Midterm Exam (25%): Focus on the basics of cryptography (theory or implementation)
- 3. Final project and presentation (30%):A group of (3-4) students will choose to summarize a crypto paper and together write a 4-6 page report (without using Chat-GPT). The 10-minute presentation will be recorded by each group and will be available on Canvas.
- 4. **Bonus** (1%): This rewards you for identifying bugs, mistakes, or similar issues in my lectures. For each bug you find, you will earn 25 points, up to a total of 100 points. This bonus assignment can contribute a maximum of 1% to your overall final grade. If you achieve the highest possible scores in your homework, exams, projects, and this bonus assignment, your final score will be 101 out of 100.

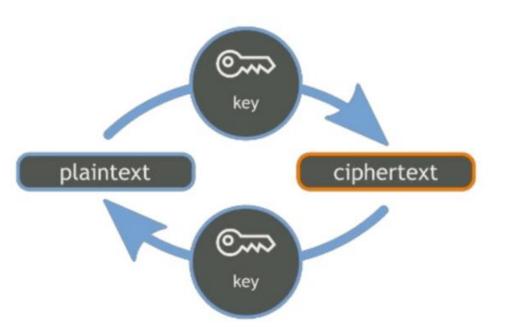
A+	A	A-	B+	В	C+	С	D	E
$\geq 98\%$	$\geq 95\%$	$\geq 90\%$	≥ 88%	$\geq 80\%$	$\geq 75\%$	$\geq 70\%$	$\geq 60\%$	0 - 59%

Final Project and Presentation

- A group of (3-4) students will choose to summarize a crypto paper and together write a 4-6 page report (without using ChatGPT). The 10-minute presentation will be recorded by each group and will be available on Canvas.
- Choose any project topic related to applied cryptography:
 - https://docs.google.com/spreadsheets/d/1yQE <a h
- The selected paper must be selected from top 20 conferences + journals
 - https://scholar.google.es/citations?view-op=top-venues&hl=en&vq=eng-computersecuritycryptography
 - If you choose a topic related to your research direction (such as secure IoT), you can choose papers from top conferences/journals from your domain (e.g., INFOCOM, IEEE/ACM Transactions, http://csrankings.org/). Please send me an email for approval.

Timeline

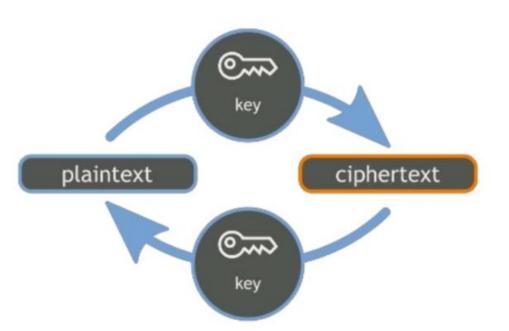
Course Summary:


Date	Details	Due
Sat Sep 30, 2023	₽ HW1	due by 11:59pm
Sat Oct 21, 2023	₽ HW2	due by 11:59pm
Sat Nov 4, 2023	Mid-term Exam	due by 11:59pm
Thu Nov 23, 2023	₽ HW3	due by 11:59pm
Fri Dec 1, 2023	Project	due by 11:59pm

Week-1

- Greetings
- Syllabus
- What Cryptography is
- What "Applied" Cryptography is
- Why cryptography is good for the world?

What is Cryptography?


- Cryptography is more than just hiding information (i.e., encryption)
- Cryptography is math
- Crypto definition
 - Idea: compare 2 probability distributions

One-time Pad:

What is Cryptography?

- Cryptography is more than just hiding information (i.e., encryption)
- Cryptography is math
- Crypto definition
 - Idea: compare 2 probability distributions

One-time Pad:

Sample: Quiz Question

- Given an OTP ciphertext 1111, encrypted with the key 0101, what is the plaintext?
 - 0000
 - 1011
 - 0101
 - 1010

Sample: Quiz Question

- Given two OTP ciphertexts, encrypted with the same key
 - Ct = 01010100 01010001 01011010
 - ct'= 01010100 01001010 01000011
- You know that either ct and ct' are encryptions of ``abc'' and ``ayz'' or ct and ctx' are encryptions of ``abz'' and ``xyz"
- Which of these two possibilities is correct?
 - ``abc'' and ``ayz"
 - ``abz'' and ``xyz"

Week-1

- Greetings
- Syllabus
- What Cryptography is
- What "Applied" Cryptography is
- Why cryptography is good for the world?